Cornell Bowers gy . 2
College of Computlng and Infor_?:‘____j_ﬂ-- e

»i“‘ SR TGN ;i

Cornell Bowers Ci1S
Logistics

e Assignment #4 Feedback Form due Friday

o Will release this evening

Cornell Bowers CiIS

Limitations of Supervised Learning

Can a regression/classification algorithm learn to perform these tasks successfully?

Robot learning to pick up blocks Waymo self-driving car

Cornell Bowers C1IS

Using Reinforcement Learning to play games

- 00:00:27

@ /LPHAGO » OV a
00:08:32 e 4 © LEE SEDOL
Y vV ,/‘ i
>

Cornell Bowers C1IS

Supervised Learning

- Learns from a labeled
dataset

- Classification
Regression

Unsupervised Learning

- Find patterns in
unlabeled data

- Clustering
Generative Models

’ A o -
/ o L] PY X G
! \ ~~
| @ @ [=~
\ o 1 \ °
\
‘\ PY o [] Iy ° Y [N]
\ ! @ \
o o J % o o ° \
~
. <
ey . ® e
i 4 i e
e e »
° ~ gl
°] L \
1
e O ;

Reinforcement Learning

- Agent interacts with
an environment and
learns to maximize a
reward

- Game Playing
Robot Navigation

L B C

(obstacles

r obstacles

GOAL

Cornell Bowers C1IS
Pacman Example

Objective of Game: Eat the
most pellets

Want to maximize reward
(pellets)

Not differentiable!

Cornell Bowers C1IS
Agent and Environment

™| Agent K‘

state d 3
o i PN

5 : Environmen

Agent: Environment:

- The external context in which an
agent operates and interacts with

- Provides feedback to agent

- Perceives environment.
- Makes decisions.
- Aims to maximize reward.

Cornell Bowers C1IS

Markov Process

Probabilistic events in which state at time ¢ -+ 1 solely depends on state at

time ¢

0.8 sunny

0.2

P e

rainy 0.4

_//

0.6

Cornell Bowers C1IS

Markov Decision Process (MDP)

Framework for modeling decision-making in situations where outcomes are partly

random and partly under the control of a decision maker

b

;7
—a
=]
= :“)
\;}

/iy
V

Vi
\

b 4

Cornell Bowers C1IS

State Space

S — {317 592,53, . .

— &: Set of states representing the environment.

S1

59

53

b 4

}

Cornell Bowers C1IS

Action Space A = {Up, Down, Left, Right}

— A: Set of actions the agent can take.

b 4

Cornell Bowers C1IS
Transition Function

— P: Transition probability function, P(s’|s, a).

Probability distribution of W
the next state given the current 0
state and action i i i i

Cornell Bowers C1IS

Reward Function

— R: Reward function, R(s,a).

Action Reward
Up -5

Right 10

Cornell Bowers C1IS

Discount Factor

— « € [0,1]: Discount factor that balances immediate and future rewards.

-
é
/' NOW versus [later
%

Cornell Bowers CiIS
Markov Decision Process (MDP)

e MDPs provide a framework for modeling sequential decision-making problems.
e An MDP is defined by a tuple (S, A, P,R,7):

— & Set of states representing the environment.

— A: Set of actions the agent can take.

— P: Transition probability function, P(s'|s, a).

— R: Reward function, R (s, a).

— ~: Discount factor, v € [0, 1].

Cornell Bowers CiIS

Discussion: Identify the agent, environment and reward in each game.

Tetris

Super Smash Bros

Cornell Bowers C1IS

Markov Decision Process (MDP)

An MDP is defined by a tuple (S, A, P, R,~)

How can we find a policy to
maximize reward?

Cornell Bowers CiIS

Policy

e A policy 7 is a mapping from states to actions, defining the agent’s behavior.
— Formally, a policy is a function 7 : S — A.

e The policy determines which action the agent takes in each state.

e The goal of reinforcement learning is to find an optimal policy 7* that maximizes the expected
cumulative reward.

Cornell Bowers Ci1S
Policy
e The goal of reinforcement learning is to find an optimal policy 7* that maximizes the expected
cumulative reward.

e The expected cumulative reward is defined as:

where:
— R(st,a4) is the reward obtained at time step t for taking action a; in state s;.

— v € [0,1] is the discount factor that determines the importance of future rewards.

Cornell Bowers CIS

Discounting Example

Kilian gets reward r for finding the coin

> V' R(st,)
t=0

Cornell Bowers CIS

Discounting Example

Z 7tR(St’ a't)
t=0

Cornell Bowers CIS

Discounting Example

: 4

Z 7tR(St’ a't)
t=0

Cornell Bowers CIS

Discounting Example

)
]

2
&

&

¢

7

‘/

-

Z 'YtR(Sta a't)
t=0

Cornell Bowers CIS

Discounting Example

3
\ o P

9
4

T
0 0

> " R(st,ar)
t=0

Cornell Bowers CIS

Discounting Example

)
\ P

g

(5%

%
0

-

Cornell Bowers CiIS

Policy

e Different types of policies:
— Deterministic policy: Maps each state to a single action.

— Stochastic policy: Defines a probability distribution over actions for each state.

Cornell Bowers C1IS

Pacman Example

Discussion: Identify the state
space S and action space A
of Pacman

Is the policy below good (based on our
current location)?
What would a good policy look like?

Move Probability
Left .85
Right .00
Up .15

Down .00

Cornell Bowers CIS
Value Function

e The value function V™ (s) represents the expected cumulative reward an agent can obtain
starting from state s and following policy .

e Mathematically, the value function is defined as:

E YR (s¢,ae) | so =8,

— v € [0, 1]: Discount factor that balances immediate and future rewards.
— R(st,a;): Reward obtained at time step ¢ for taking action a; in state s;.

— m: Policy that maps states to actions.

Cornell Bowers CIS
Value Function

e Mathematically, the value function is defined as:

VT(s)=E ny (s¢,ae) | so =8,

e The optimal value function V*(s) represents the maximum expected cumulative reward achiev-
able from state s by following the optimal policy 7*.

e The optimal value function is defined as:

V*(s) = max V*m(s)

™

Cornell Bowers C1S
Action-Value (Q) Function

e Mathematically, the value function is defined as:

VT(s)=E ny (s¢,ae) | so =8,

e Can we use a value function to choose actions?
— Optimal action: argmax, [r(s,a) + YEy(s/|s.a) [V™(5')]]

— Problem: Requires taking the expectation with respect to the environment’s dynamics,
which we don’t have direct access to!

Cornell Bowers C1S
Action-Value (Q) Function

e The action-value function, or Q-function, represents the expected return if you take action a
in state s and then follow policy .

e Defined as:

oo
QW(S,G) = [E Z’ykRk+1 | So = s’ao = q
k=0

e Optimal action using Q-function:

argmax Q" (s, a)

Cornell Bowers C1S
Action-Value (Q) Function

e Relationship between value function and Q-function:

V7(s) =) m(a|5)Q(s,a)

e Can recover the value function from the Q-function by marginalizing over all possible actions.

Cornell Bowers C1IS

Q-Table

e In Q-Learning, the Q-function is typically represented using a Q-table.
— A table that stores the estimated Q-values for state-action pairs.
e QQ-table has dimensions |S| x |A|, where:
— |S] is the number of states in the state space.
— | A| is the number of actions in the action space.

e The Q-table is initialized with arbitrary values and iteratively updated based on the agent’s
experiences during the learning process.

Cornell Bowers CIS

Q-Table Example

e 9 states and 4 actions
e [nitialize valid (s,a) tuples to Os

Up Down | Right | Left
Bottom Left 0 - 0 -
Bottom Middle | O - 0 0
Bottom Right 0 - - 0
Mid Left 0 0 0 -
Mid Middle 0 0 0 0
Mid Right 0 0 - 0
Top Left - 0 0 -
Top Middle - 0 0 0
Top Right - 0 - 0

Cornell Bowers C1IS N
. wo 5 _ . o
Bellman Equation Q"(s,0) =E | _7*Res1|s0 =500 =a

k=0

e The Bellman equation for Q-Learning provides a recursive relationship between the Q-value
of a state-action pair and the Q-values of the successor state-action pairs.
e Bellman equation for the optimal action-value function @Q*(s,a):

Q" (5,0) =R(s,a) +7 3 P(s']s, 0) max Q" (s',

s'eS

e Optimal Q-value Q*(s,a) can be expressed in terms of the immediate reward and the dis-
counted maximum Q-value of the next state.

Cornell Bowers C1S Q*(s,0) =R(s,a) +v), P(s'|s,a) max Q*(s',a')

s’eS
Bellman Error

e The Bellman error measures the difference between the current Q-value estimate and the
target Q-value based on the recursive Bellman equation.

e Bellman error for a state-action pair (s, a):

§ =R(s,a) +ymaxQ(s',a') — Q(s,a)

e The Bellman error represents the discrepancy between the current (Q-value estimate and the
target Q-value derived from the recursive Bellman equation.

— Goal is to minimize the Bellman error and bring the current Q-value estimates closer to
the optimal Q-values.

Cornell Bowers C1IS

Q-Learning Update Rule

e The Q-Learning update rule adjusts the Q-value estimate towards the target Q-value using
the Bellman error:

Q(s,a) < Q(s,a) + aé
where:

— «a: Learning rate that controls the step size of the update.

— ¢: Bellman error.

Cornell Bowers C1IS
Q-Learning Update Rule Q(s:0) =R(s,a) +7 D, P(s'ls,) max Q°(s', o)

s'eS

e The Q-Learning update rule can be expanded as:

Q(s,a) + Q(s,a) + & [R(s, a) + ymax Q(s', ') — Q(s, a)|

e The update rule adjusts the current Q-value estimate @Q(s,a) in the direction of the target
QQ-value based on the Bellman error.

— Q-values are gradually improved and converge towards the optimal Q-function.

Cornell Bowers CiIS

Q-Learning Algorithm

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) «+ Q(S,A) + a[R + vy max, Q(S’,a) — Q(S, A)]
S« S’;

until S is terminal

Cornell Bowers C:IS
Exploration-Exploitation Tradeoff Q(s,a) « Q(s,a) + ad

e (Q-Learning only learns about the states and actions it visits.

e Exploration-exploitation tradeoff: The agent should sometimes pick suboptimal actions to
visit new states and actions.

e Balancing exploration and exploitation is crucial for effective learning;:
— Exploration: Trying new actions to gather information about the environment.

— Exploitation: Using the current knowledge to make the best decisions based on the
learned Q-values.

Cornell Bowers C:IS
Exploration-Exploitation Tradeoff Q(s,a) « Q(s,a) + ad

e Insufficient exploration may lead to suboptimal policies and getting stuck in local optima.

e Too much exploration may slow down the learning process and hinder the agent from con-
verging to the optimal policy.

e Finding the right balance between exploration and exploitation is essential for efficient and
effective learning in Q-Learning.

Cornell Bowers CIS

Exploration-Exploitation TradeOff D V'R (st,a0)

No Exploration:

e Begin by making random moves
e Find some way to obtain reward
e Stick with that solution

Cornell Bowers C1IS

e-Greedy Policy

e Simple solution to balance exploration and exploitation: e-greedy policy

e c-greedy policy:

— With probability 1 — €, choose the optimal action according to the learned Q-values.

— With probability €, choose a random action.

e The e-greedy policy ensures that the agent explores the environment while still exploiting the
learned knowledge.

e Despite its simplicity, e-greedy is still widely used in practice and often yields good results.

Cornell Bowers C1IS

Discussion: Calculate the size of the State Space
for Pacman in the following environment

Assume there are 100
positions, 4 ghosts, and
pacman

(Can ignore pellets for
simplicity)

Cornell Bowers C1IS

Discussion: Calculate the size of the State Space
for Pacman in the following environment

4 ghosts and Pacman
100 - 100 - 100 - 100 - 100 = 10™

What if we consider
pellets? Assuming there
are 100 pellets:

2100 . 1010 > 1040

Cornell Bowers CiIS
What are the issues with Q Learning?
- As the state/action space increases, the likelihood of reaching a specific

state and action decreases
- Continuous spaces are impossible to model with a table

Cornell Bowers C1IS

Dense Rewards Sparse Rewards
K | == 1
| O

Cornell Bowers CiIS
Discussion: if a long sequence of actions results in just one reward,
how do you know which states/action(s) are responsible?

b 4

How do you learn a good policy in the e
presence of sparse rewards?

e In general, credit attribution is hard!
e Can introduce intermediate rewards
o E.g. distance to money

o Not always possible!

e Hard to learn with sparse rewards *

Cornell Bowers C1IS

Next Time: How can we use deep learning to improve Q-Learning?

Q-Learning
Q Table

State-Action Value

State >

Q-Value

Action —>|

Deep Q-Learning

Q-Value Action 1

State Q-Value Action 2

Q-Value Action n

Cornell Bowers CiIS

Recap

e Markov Decision Processes (MDPs)
o Framework for modeling decision-making in situations where outcomes are partly random and
partly under the control of a decision maker
e Value function
o Expected cumulative reward from state s following some policy
e Action-value (Q) function
o Expected cumulative reward if you take action a in state s and follow some policy
e (Q-Learning iteratively updates a Q-Table to minimize the Bellman Error

o Need to balance exploration-exploitation tradeoff
o Often use epsilon-greedy policy for exploration

