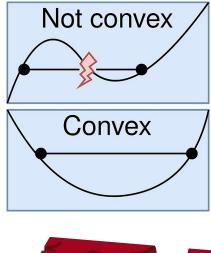


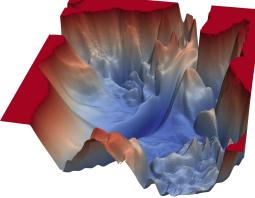
## **Cornell Bowers C·IS** College of Computing and Information Science

# Regularization and Data Augmentation CS4782: Intro to Deep Learning

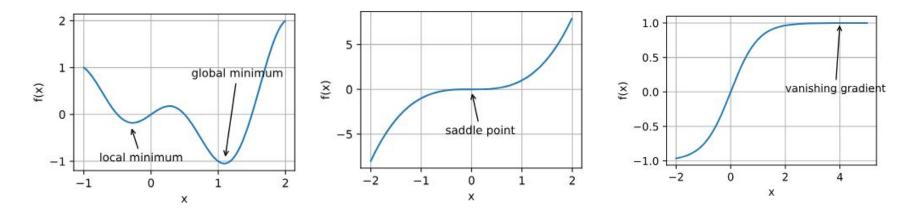
## Recap- Convexity

- A function on a graph is **convex** if a line segment drawn through any two points on the line of the function, then it never lies below the curved line segment
- Convexity implies that every local minimum is **global minimum**.
- Neural networks are **not** convex!





## Recap- Challenges in Non-Convex Optimization



Local Minima vs. Global Minima

Saddle Points

Vanishing gradient

## **Recap- Optimizers**

- Gradient Descent
  - Vanilla, costly, but for best convergence rate
- Stochastic Gradient Descent
  - Simple, lightweight
- Mini-batch SGD
  - balanced between SGD and GD
  - 1st choice for small, simple models
- SGD w. Momentum
  - Faster, capable to jump out local minimum
- AdaGrad
- RMSProp
- Adam
  - Just use Adam if you don't know what to use in deep learning

No!

## But are they equivalent somehow?

There are *many* minimizers of the training loss The **optimizer** determines which minimizer you converge to

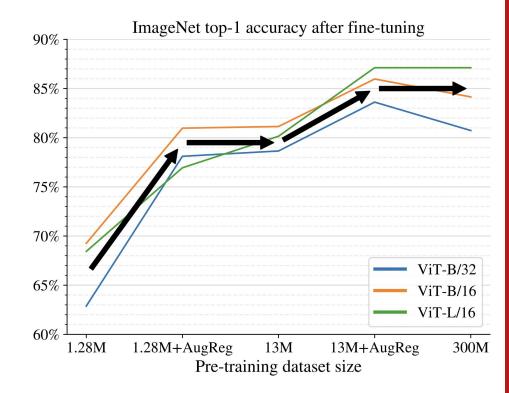


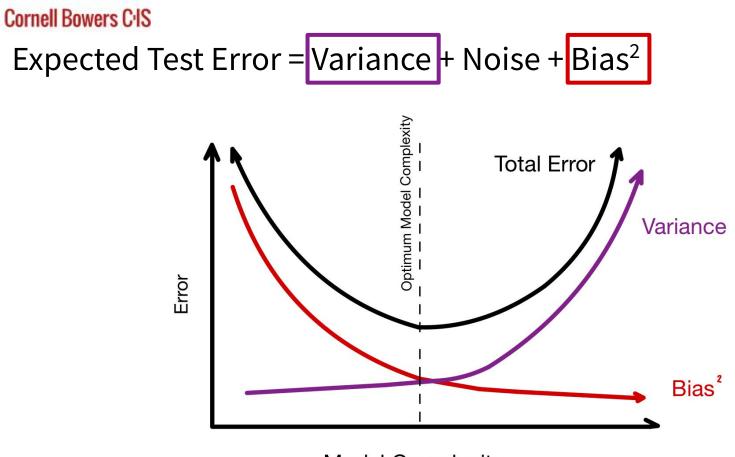
## Cornell Bowers C·IS Agenda

- Motivation behind regularization
- Regularization in deep learning
- Data Augmentation
- Normalization methods

## Why do we care?

- Regularization and data augmentation are really effective!
- Can be worth millions of additional training images

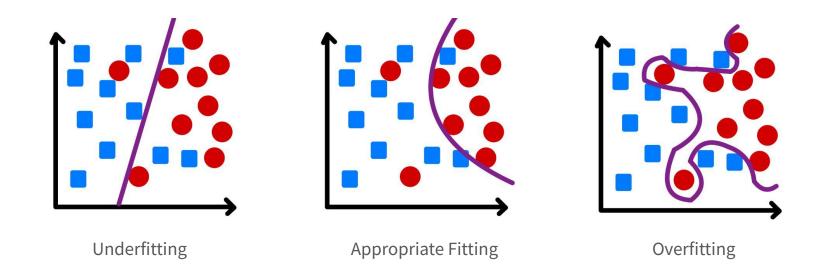




Model Complexity

## Complex models have high variance

An overfit model performs well on training data, but does not perform well on test data.



## Discuss: What are some ways to reduce overfitting?

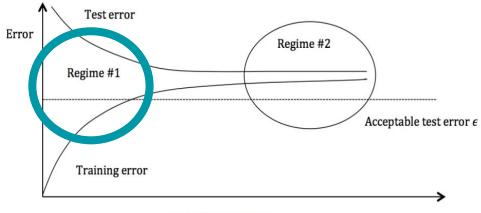
## Demo: Overfitting

Tensorflow Playground

## What is Regularization?

Regularization refers to **techniques** used to prevent machine learning models from overfitting in order to minimize loss function.

Models that overfit can have large generalization gaps.



# Training instances

Comparing Error and Number of Training Instances

## Cornell Bowers CIS Regularizers

Regularizers are used to quantify the complexity of a model.

Empirical Risk Minimization:

$$\mathbf{w} = \operatorname*{arg\,min}_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{i} \ell(\mathbf{w}, \mathbf{x}_i)$$

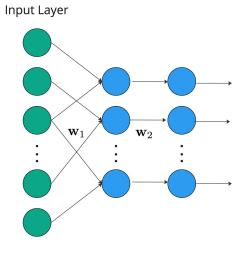
**Regularized Empirical Risk Minimization:** 

$$\mathbf{w} = \operatorname*{arg\,min}_{\mathbf{w}} \mathcal{L}(\mathbf{w}) + \lambda \cdot r(\mathbf{w})$$

where  $r(\mathbf{w})$  is some measure of model complexity that we want to control.



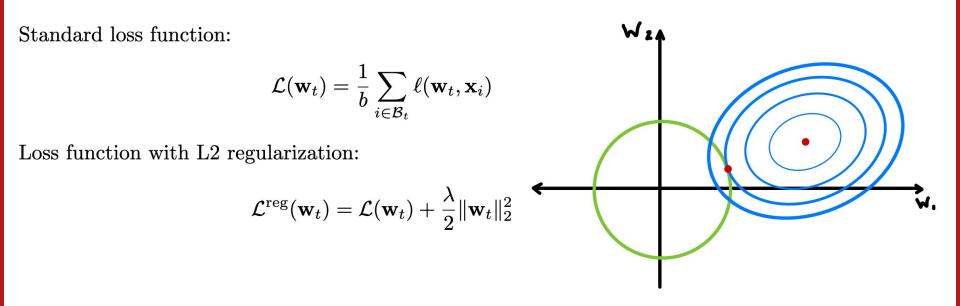
Regularizers are used to quantify the complexity of a model.



Deep net

## L2 Regularization

The most widely used regularization technique



## Effect of L2 Regularization

Loss function with L2 regularization:

$$\mathcal{L}^{\mathrm{reg}}(\mathbf{w}_t) = \mathcal{L}(\mathbf{w}_t) + rac{\lambda}{2} \|\mathbf{w}_t\|_2^2$$

Gradient of L2-regularized loss:

$$abla \mathcal{L}^{\mathrm{reg}}(\mathbf{w}_t) = 
abla \mathcal{L}(\mathbf{w}_t) + \lambda \mathbf{w}_t$$

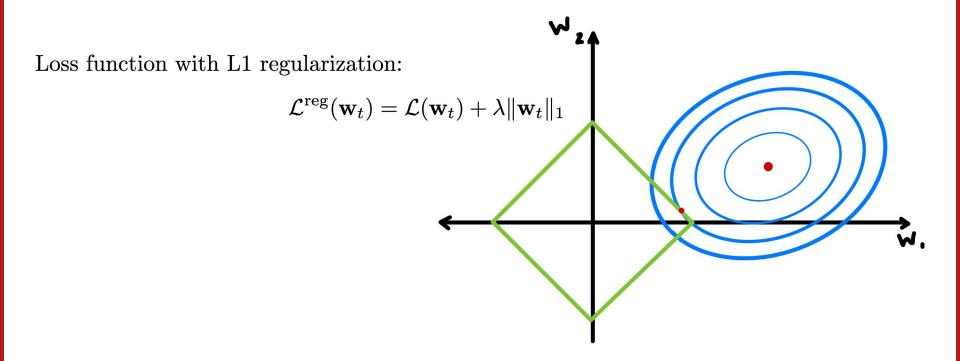
Gradient descent update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Gradient descent update with L2 regularization:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}^{\mathrm{reg}}(\mathbf{w}_t)$$

## Cornell Bowers CIS L1 Regularization



# Discuss: What does the gradient update look like with L1 regularization?

## Demo: L1/L2 Regularization

Tensorflow Playground

Cornell Bowers CIS Weight Decay

Gradient descent update:

$$w_{t+1} = (1 - \lambda)w_t - \alpha \nabla L(w_t)$$

Weight decay explicitly decays the weights towards 0 at each step

$$w_{t+1} = (1 - \lambda)w_t - \alpha \nabla L(w_t)$$

Typically set decay coefficient near zero, e.g.  $\lambda = 0.01$ 

## Connection Between Weight Decay and L2 Regularization

Gradient descent update with L2 regularization:

$$\mathcal{L}^{\text{reg}}(\mathbf{w}_t) = \mathcal{L}(\mathbf{w}_t) + \frac{\lambda_0}{2} \|\mathbf{w}_t\|_2^2$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}^{\text{reg}}(\mathbf{w}_t) = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t) - \alpha \lambda_0 \mathbf{w}_t$$

Gradient descent update with weight decay:

$$\mathbf{w}_{t+1} = (1 - \lambda_1)\mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t) = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t) - \lambda_1 \mathbf{w}_t$$

L2 regularization and weight decay are equivalent with  $\lambda_1 = \alpha \lambda_0$ 

## Connection Between Weight Decay and L2 Regularization

Are weight decay and L2 regularization equivalent in general?

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}^{\mathrm{reg}}(\mathbf{w}_t) = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t) - \alpha \lambda_0 \mathbf{w}_t$$

$$\mathbf{w}_{t+1} = (1 - \lambda_1)\mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t) = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t) - \lambda_1 \mathbf{w}_t$$

## Cornell Bowers C·IS AdamW

Algorithm 2 Adam with L<sub>2</sub> regularization and Adam with decoupled weight decay (AdamW)

- 1: given  $\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, \lambda \in \mathbb{R}$
- 2: initialize time step  $t \leftarrow 0$ , parameter vector  $\boldsymbol{\theta}_{t=0} \in \mathbb{R}^n$ , first moment vector  $\boldsymbol{m}_{t=0} \leftarrow \boldsymbol{\theta}$ , second moment vector  $\boldsymbol{v}_{t=0} \leftarrow \boldsymbol{\theta}$ , schedule multiplier  $\eta_{t=0} \in \mathbb{R}$
- 3: repeat
- 4:  $t \leftarrow t+1$ 5:  $\nabla f_t(\boldsymbol{\theta}_{t-1}) \leftarrow \text{SelectBatch}(\boldsymbol{\theta}_{t-1})$
- 6:  $\boldsymbol{g}_t \leftarrow \nabla f_t(\boldsymbol{\theta}_{t-1}) + \lambda \boldsymbol{\theta}_{t-1}$
- 7:  $\boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + \overline{(1-\beta_1)\boldsymbol{g}}_t$
- 8:  $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 \beta_2) \mathbf{g}_t^2$ 9:  $\hat{\mathbf{m}}_t \leftarrow \mathbf{m}_t / (1 - \beta_1^t)$
- 9.  $\mathbf{m}_t \leftarrow \mathbf{m}_t / (1 \beta_1)$ 10:  $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t / (1 - \beta_2^t)$
- 10.  $v_t \leftarrow v_t/(1-p_2)$ 11:  $\eta_t \leftarrow \text{SetScheduleMultiplier}(t)$

12: 
$$\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \eta_t \left( \alpha \hat{\boldsymbol{m}}_t / (\sqrt{\hat{\boldsymbol{v}}_t} + \epsilon) + \lambda \boldsymbol{\theta}_{t-1} \right)$$

- 13: **until** stopping criterion is met
- 14: return optimized parameters  $\theta_t$

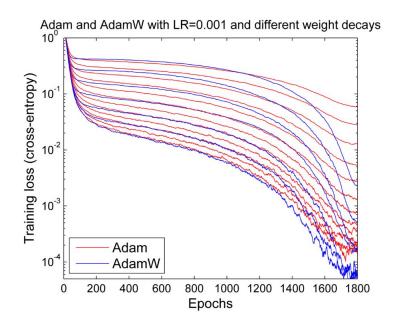
 $\triangleright$  select batch and return the corresponding gradient

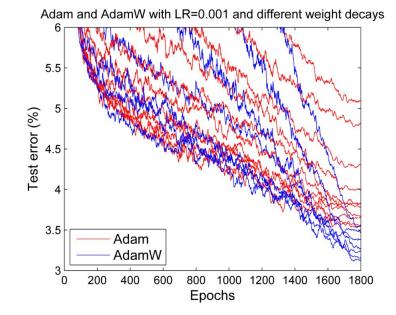
▷ here and below all operations are element-wise

 $\triangleright \ \beta_1 \text{ is taken to the power of } t \\ \triangleright \ \beta_2 \text{ is taken to the power of } t \\ \triangleright \ \text{can be fixed, decay, or also be used for warm restarts}$ 

## Adam w/ L2 Regularization vs Adam w/ Weight Decay (AdamW)

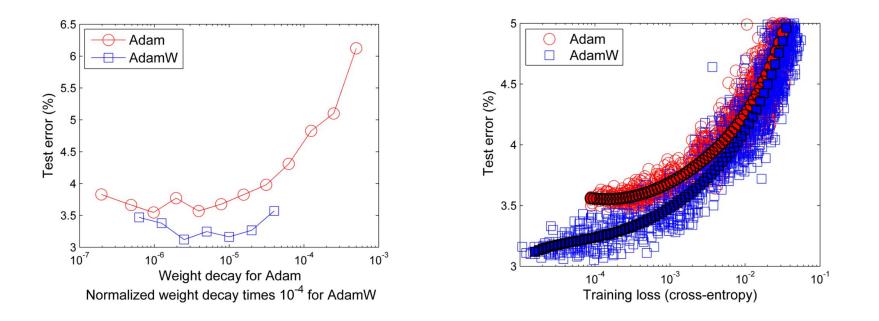
• Weight decay is more effective than L2 regularization when using Adam





Adam w/ L2 Regularization vs Adam w/ Weight Decay (AdamW)

• Weight decay is more effective than L2 regularization when using Adam



## **Optimizers Recap**

- Gradient Descent
  - Vanilla, costly, but for best convergence rate
- Stochastic Gradient Descent
  - Simple, lightweight
- Mini-batch SGD
  - balanced between SGD and GD
  - 1st choice for small, simple models
- SGD w. Momentum
  - Faster, capable to jump out local minimum
- AdaGrad
- RMSProp
- Adam
  - Just use Adam if you don't know what to use in deep learning

## (Updated) Optimizers Recap

- Gradient Descent
  - Vanilla, costly, but for best convergence rate
- Stochastic Gradient Descent
  - Simple, lightweight
- Mini-batch SGD
  - balanced between SGD and GD
  - 1st choice for small, simple models
- SGD w. Momentum
  - Faster, capable to jump out local minimum
- AdaGrad
- RMSProp
- Adam
- AdamW
  - Just use AdamW if you don't know what to use in deep learning

## **Discuss: Image Classification**

How can we make a model for image classification more robust?

Can we augment the training data without annotating more images?



Horizontal Flip



## Discuss: Text Classification

How can we make a model for sentiment classification more robust?

Can we augment the training data without annotating more examples?

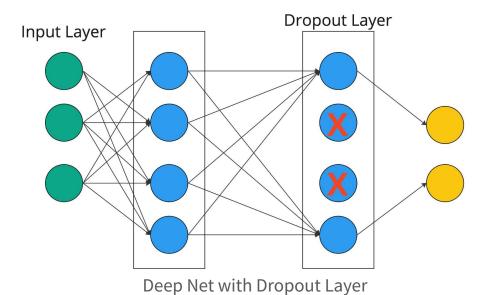
**Positive Movie Review:** Still, this flick is fun, and host to some truly excellent sequences.

Negative Movie Review:

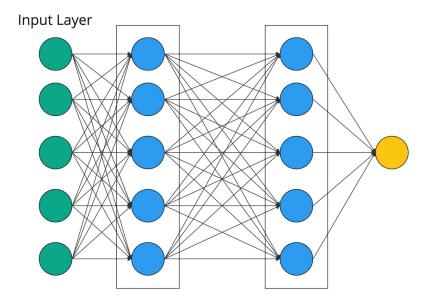
begins with promise , but runs aground after being snared in its own tangled plot .

In each forward pass, randomly set some neurons to zero.

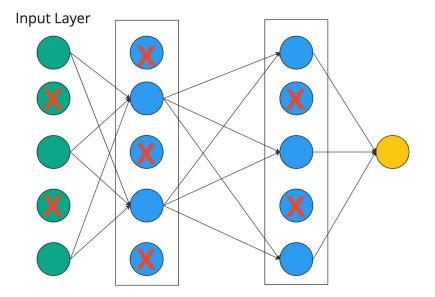
Probability of dropping is a hyperparameter; p=0.5 is common.



## **Implementing Dropout**



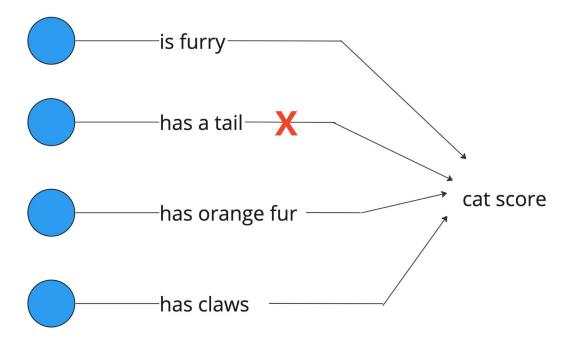
Standard deep net with two hidden layers



Deep net produced by applying dropout. Crossed units have been dropped

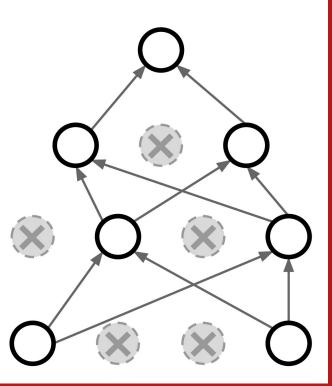
## Why is Dropout a good idea?

Dropout forces the network to have a redundant representation, which prevents co-adaptation of features.



## Why is Dropout a good idea?

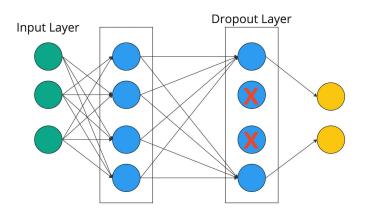
- Another interpretation: Dropout trains a large ensemble of models with shared weights
- Each dropout mask corresponds to a different "model" within the ensemble.
- A fully connected layer with 4096 units has 2<sup>4096</sup>~10<sup>1233</sup> possible masks!
  - $\circ$  Only ~ 10<sup>82</sup> atoms in the universe



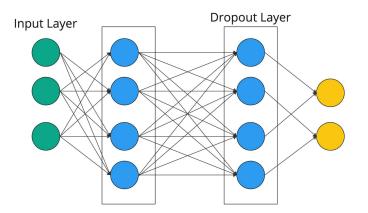
## Dropout During Test Time

Use all of the neurons in the network

Does this introduce any problems?



Training Time



Test Time

## **Dropout During Test Time**

Need to re-scale activations so they are the same (in expectation) during training and testing

 $\begin{array}{c}
 a \\
 w_1 \\
 w_2 \\
 \hline
 x \\
 y
\end{array}$ 

Consider a single neuron.

At test time we have:  $E[a] = w_1 x + w_2 y$ During training we have:  $E[a] = \frac{1}{4}(w_1 x + w_2 y) + \frac{1}{4}(w_1 x + 0y)$ At test time, **multiply** by dropout probability  $E[a] = \frac{1}{4}(w_1 x + w_2 y) + \frac{1}{4}(w_1 x + 0y)$   $+ \frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2 y)$  $= \frac{1}{2}(w_1 x + w_2 y)$ 

http://cs231n.stanford.edu/slides/2018/cs231n\_2018\_lecture07.pdf

## **Effectiveness of Dropout**

• Improves generalization of neural nets when training with limited data

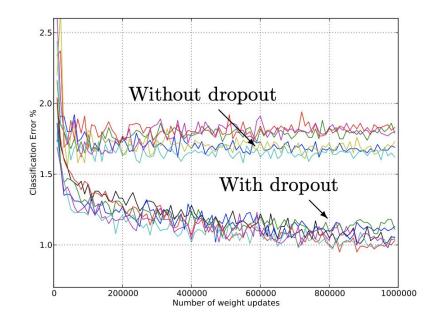
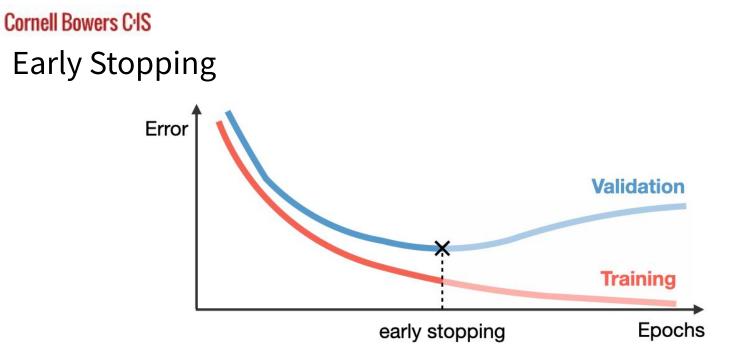


Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

> "Dropout: A Simple Way to Prevent Neural Networks from Overfitting" by Srivastava et al., 2014

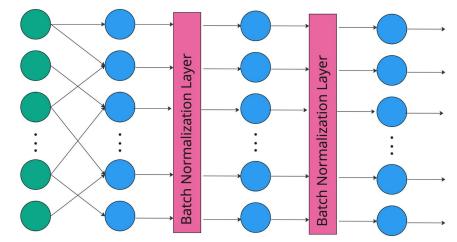


- Pick the training checkpoint with the strongest validation performance
- Easy to implement, should use by default

# **Batch Normalization**

Batch Normalization normalizes the intermediate features in neural networks.

We standardize the inputs to each layer by normalizing the output of the prior layer



Input Layer

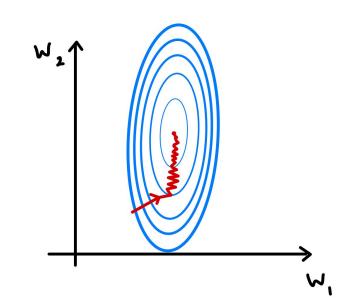
## Why should we standardize data?

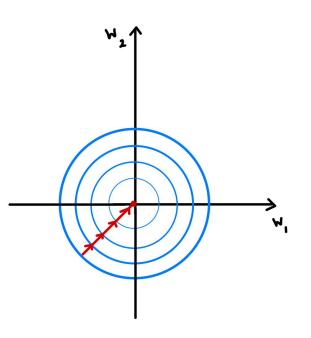
- Standardization ensures all features have a similar scale
  - Beneficial for optimization
- We do not know a priori which features will be relevant and we do not want to penalize or upweight features

### Example: Predicting house sale price

Bedrooms: 1 to 5 W,

Square footage: 0 to 2000 square feet W,





The Batch Normalization Algorithm **Input:** Values of x over a mini-batch:  $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned:  $\gamma$ ,  $\beta$ **Output:**  $\{y_i = BN_{\gamma,\beta}(x_i)\}$  $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean  $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance  $\widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$ // normalize  $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

**Algorithm 1:** Batch Normalizing Transform, applied to activation x over a mini-batch.

### BatchNorm: Inference Behavior

- Model inference should be deterministic
  - Normalization depends on the elements in the batch
- Solution: Use running average statistics calculated during training as:

$$\mu_{\inf} = \lambda \mu_{\inf} + (1 - \lambda) \mu_{\mathcal{B}}$$
$$\sigma_{\inf}^2 = \lambda \sigma_{\inf}^2 + (1 - \lambda) \sigma_{\mathcal{B}}^2$$

### **Batch Normalization**

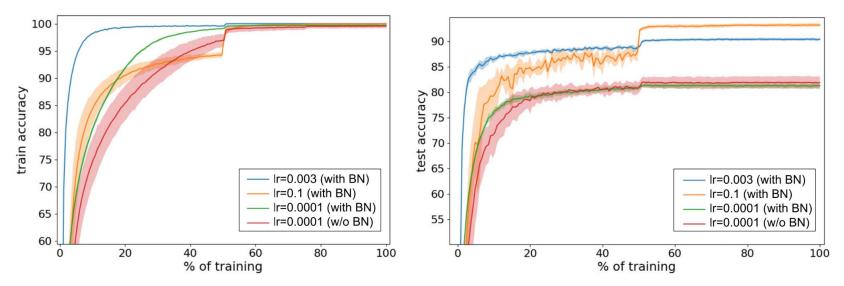
Input Layer

Layer

**Batch Normalization Layer Batch Normalization** •

## Benefits of batch normalization

- Improves conditioning of the network and enables using a larger learning rate
  - Benefit of batch norm disappears at small learning rates!
  - Large learning rate improves generalization



"Understanding Batch Normalization" by Bjorck et al. 2018

# Why does a large learning rate help?

• Noise of the gradient estimate scales with the learning rate (Bjorck et al. 2018)

$$\alpha \nabla_{SGD}(x) = \underbrace{\alpha \nabla \ell(x)}_{\text{gradient}} + \underbrace{\frac{\alpha}{|B|} \sum_{i \in B} \left( \nabla \ell_i(x) - \nabla \ell(x) \right)}_{\text{error term}}$$

 $\mathbb{E}\left[\frac{\alpha}{|B|}\sum_{i\in B}\left(\nabla\ell_i(x) - \nabla\ell(x)\right)\right] = 0 \qquad C = \mathbb{E}\left[\|\nabla\ell_i(x) - \nabla\ell(x)\|^2\right]$ 

$$\mathbb{E}\left[\|\alpha \nabla \ell(x) - \alpha \nabla_{SGD}(x)\|^2\right] \le \frac{\alpha^2}{|B|}C$$

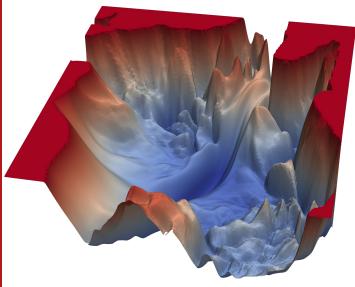
# Why does a large learning rate help?

- Noise of the gradient estimate scales with the learning rate (Bjorck et al. 2018)
- Large learning rates have noisier updates
  - Actually improves generalization
- Large learning rate acts like a regularizer

$$\mathbb{E}\left[\|\alpha \nabla \ell(x) - \alpha \nabla_{SGD}(x)\|^2\right] \le \frac{\alpha^2}{|B|}C$$

## **Conceptual Sketch**

- Noisy updates are good at escaping sharp minima
- Flatter minima generalize better



"Visualizing the Loss Landscape of Neural Nets" by Li et al., 2017

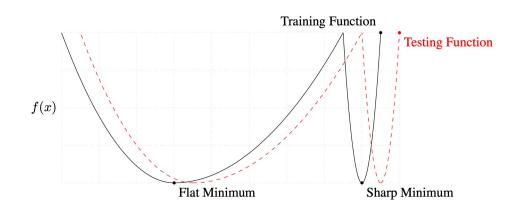
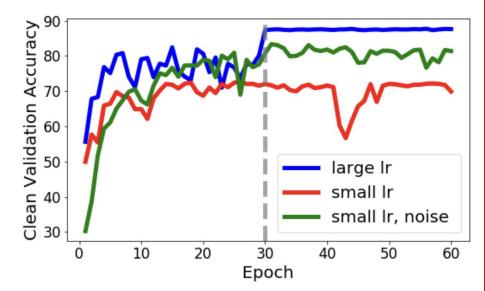


Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss function and the X-axis the variables (parameters)

"On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima" by Keskar et al., 2017

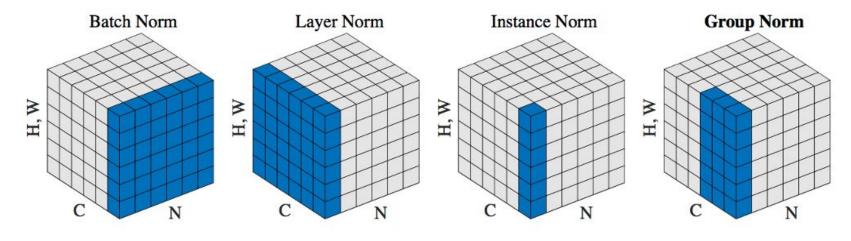
# Why does a large learning rate help?

- Noise of the gradient estimate scales with the learning rate (Bjorck et al. 2018)
- Add Gaussian noise to the activations of a neural net during training
  - Improves performance when using low learning rates (Li et al., 2019)



"Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks" by Li et al., 2019

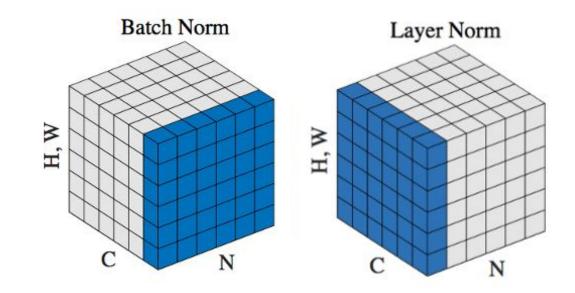
### Many Kinds of Normalization Layers



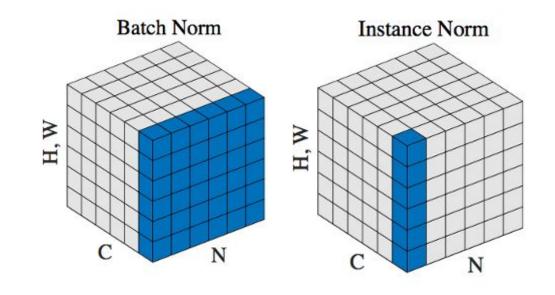
### Normalization Methods

"Group Normalization" by Wu et al., 2018

### Layer Normalization

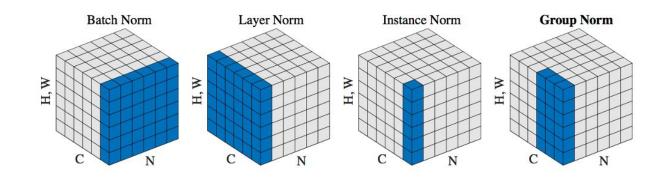


### **Instance Normalization**



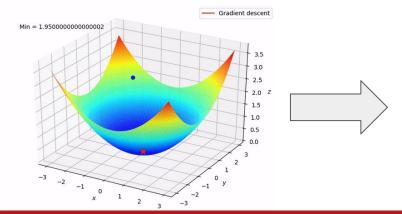
# Normalization Layers

- Normalization layers improve training stability
- Can train with larger learning rates
  - Faster training
- A large learning rate acts as an implicit regularizer
  - Better generalization



### Convex vs. Non-Convex Optimization

- Convex optimization: Only one global minima
  - Gradient descent is guaranteed to find it
  - Optimization is all about getting there quickly
- Non-Convex optimization: Many different minima (and saddle points)
  - No theoretical guarantees!
  - Different optimization algorithms will find different minima



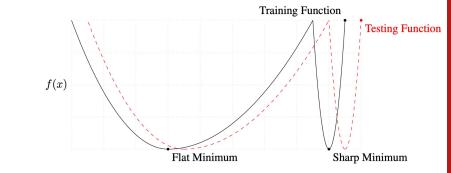


Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss function and the X-axis the variables (parameters)

## Algorithmic Regularization

- Traditional regularization adds explicit penalties (e.g., L1/L2 norm) to the loss
- Algorithmic regularization results from the optimization process itself
  - Very different from convex optimization!

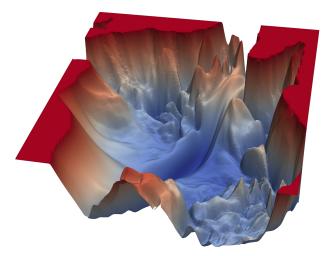
Algorithmic Regularization:

$$\mathbf{w} = \operatorname*{arg\,min}_{\mathbf{w}} \mathcal{L}(\mathbf{w}) + \lambda \cdot r_{\mathcal{A}}(\mathbf{w})$$

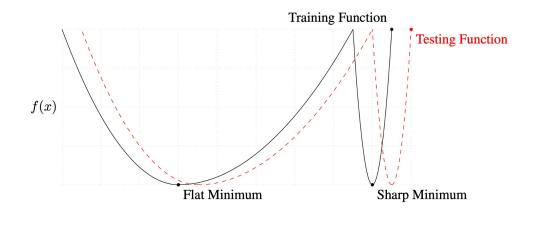
where  $r_{\mathcal{A}}(\mathbf{w})$  is some measure of model complexity implicitly controlled by the learning algorithm,  $\mathcal{A}$ 

### **Non-Convex Optimization**

- Non-Convex optimization: Many different minima (and saddle points)
  - Different optimization algorithms will find different minima
- Training algorithms are biased towards "flatter" minima that generalize well



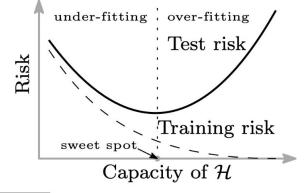
"Visualizing the Loss Landscape of Neural Nets" by Li et al., 2017



"On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima" by Keskar et al., 2017

### Zhang et al. (2017) Memorization Experiment

• *"Deep neural networks easily fit random labels"* (Zhang et al., 2017)

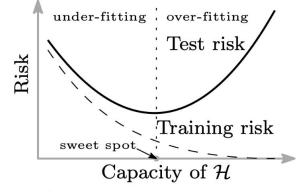


| model                                         | # params  | random crop            | weight decay           | train accuracy                   | test accuracy                    |
|-----------------------------------------------|-----------|------------------------|------------------------|----------------------------------|----------------------------------|
| Inception                                     | 1,649,402 | yes<br>yes<br>no<br>no | yes<br>no<br>yes<br>no | 100.0<br>100.0<br>100.0<br>100.0 | 89.05<br>89.31<br>86.03<br>85.75 |
| (fitting random labels)                       |           | no                     | no                     | 100.0                            | 9.78                             |
| Inception w/o<br>BatchNorm<br>(fitting random | 1,649,402 | no<br>no<br>no         | yes<br>no<br>no        | 100.0<br>100.0<br>100.0          | 83.00<br>82.00<br>10.12          |

"Understanding deep learning requires rethinking generalization" by Zhang et al., 2017

## Zhang et al. (2017) Memorization Experiment

*"Explicit regularization may improve generalization performance, but is neither necessary nor by itself sufficient for controlling generalization error."* (Zhang et al., 2017)

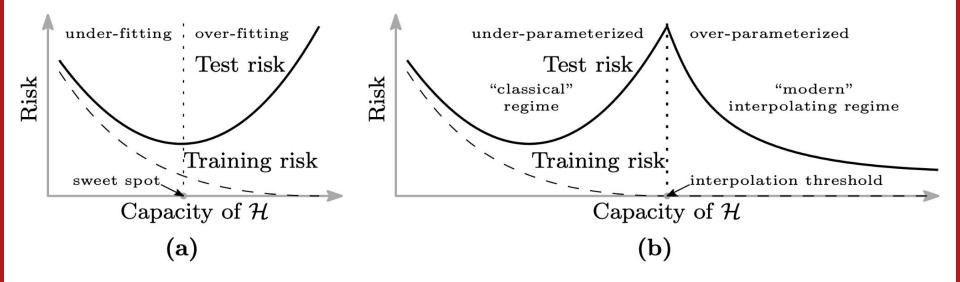


| model                                         | # params  | random crop            | weight decay           | train accuracy                   | test accuracy                    |
|-----------------------------------------------|-----------|------------------------|------------------------|----------------------------------|----------------------------------|
| Inception                                     | 1,649,402 | yes<br>yes<br>no<br>no | yes<br>no<br>yes<br>no | 100.0<br>100.0<br>100.0<br>100.0 | 89.05<br>89.31<br>86.03<br>85.75 |
| (fitting random labels)                       |           | no                     | no                     | 100.0                            | 9.78                             |
| Inception w/o<br>BatchNorm<br>(fitting randor | 1,649,402 | no<br>no<br>no         | yes<br>no<br>no        | 100.0<br>100.0<br>100.0          | 83.00<br>82.00<br>10.12          |

"Understanding deep learning requires rethinking generalization" by Zhang et al., 2017

### Deep Double Descent

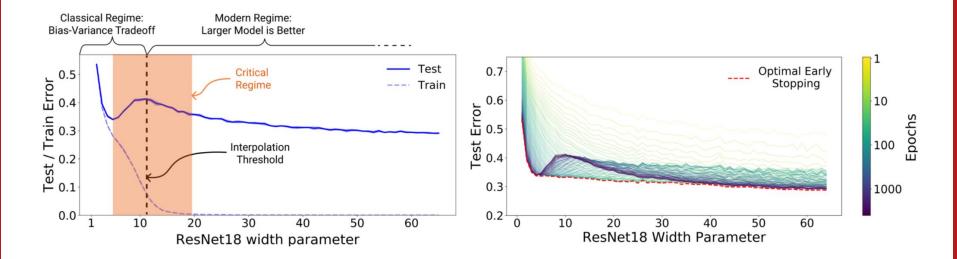
• Neural networks can exhibit a double descent curve in practice



"Reconciling modern machine learning practice and the bias-variance trade-of", by Beklin et al. (2019)

## Deep Double Descent

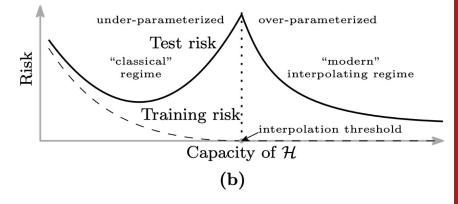
• In-depth empirical study observed double descent with modern architectures (ResNet, Transformers) and tasks (image classification, machine translation)



"Deep Double Descent: Where Bigger Models and More Data Hurt", by Nakkiran et al., 2019

### Regularization in the Interpolation Regime

- Many solutions that perfectly fit the data
- Increasing the capacity of the hypothesis class means we can find a "simpler" solution



Regularization in the interpolation regime  $(\mathcal{L}(h) \approx 0)$ :

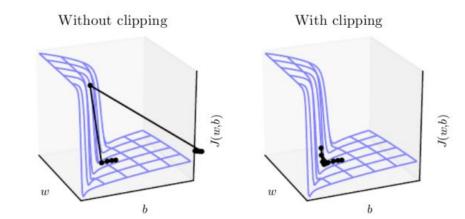
$$h = \underset{h \in \mathcal{H}}{\arg\min} \mathcal{L}(h) + \lambda \cdot r(h) \approx \underset{h \in \{h: \mathcal{L}(h) \approx 0\}}{\arg\min} r(h)$$

where r(h) is some measure of complexity

"Reconciling modern machine learning practice and the bias-variance trade-of", by Beklin et al. (2019)

# **Gradient Clipping**

- Exploding gradients result in unstable training
- Optimization is hard when you have very large gradients

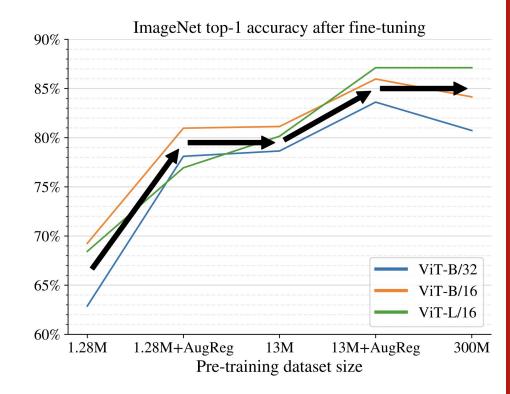


| Gradient clipping algorithm:                         |                       |
|------------------------------------------------------|-----------------------|
| $ \text{if}  \ \mathbf{g}\  > \tau:$                 | au: Max gradient norm |
| $\mathbf{g}' = rac{	au}{\ \mathbf{g}\ } \mathbf{g}$ |                       |
| else:                                                |                       |
| $\mathbf{g}' = \mathbf{g}$                           |                       |

https://neptune.ai/blog/understanding-gradient-clipping-and-how-it-can-fix-exploding-gradients-problem

## Regularization and Data Augmentation

- Regularization and data augmentation are really effective!
- Can be worth millions of additional training images



### Cornell Bowers C·IS Recap

- Use a combination of various regularization techniques to improve generalization
   L1/L2 regularization, dropout, etc.
- The training algorithm itself (e.g. SGD) is a critical regularizer in deep learning
- Neural networks are expressive enough to memorize the training data and fail to generalize
  - Generalize extremely well in practice

## First Homework!

- We are releasing the first homework assignment by tomorrow
  - Covers optimization (this week) and CNNs (next week)
  - Due two weeks from now
- Two components:
  - Written problems
  - Coding project
    - Use Google Colab
- Work on it in groups of two
- Start early!
  - Can do most of the written assignment
- Ask questions on Ed
- Office hours posted on the website
- Will be submitted on Gradescope!