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Cornell Bowers C1S
Recap- Convexity

e Afunctionon agraphisconvexifa
line segment drawn through any two
points on the line of the function,
then it never lies below the curved
line segment

e Convexity implies that every local
minimum is global minimum.

e Neural networks are not convex!

Not convex

Convex
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Recap- Challenges in Non-Convex Optimization
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Recap- Optimizers

Gradient Descent
o Vanilla, costly, but for best convergence rate

Stochastic Gradient Descent
o  Simple, lightweight

Mini-batch SGD
o  balanced between SGD and GD
o  1st choice for small, simple models

SGD w. Momentum
o  Faster, capable to jump out local minimum

AdaGrad
RMSProp

Adam
o Just use Adam if you don’t know what to use
in deep learning
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But are they equivalent somehow?

No!

There are many minimizers of the training loss
The optimizer determines which minimizer you converge to
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Agenda
e Motivation behind regularization
e Regularization in deep learning
e Data Augmentation
e Normalization methods
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Why do we care?

e Regularization and data
augmentation are really effective!

e Can be worth millions of additional
training images

90% 1

85% 1

80% A

75%

70% -

65% 1

60%

ImageNet top-1 accuracy after fine-tuning

T

m—— ViT-B/32
== ViT-B/16
= ViT-L/16

128M  1.28M+AugReg  13M  13M+AugReg  300M
Pre-training dataset size

“How to train your ViT? Data, Augmentation,and Regularization in Vision Transformers”, by Steiner et al. 2022
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Complex models have high variance

An overfit model performs well on training data, but does not perform well on test data.

Underfitting Appropriate Fitting Overfitting
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Discuss: What are some ways to reduce overfitting?
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Demo: Overfitting

Tensorflow Playground



https://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.03&regularizationRate=0.001&noise=50&networkShape=8,8,8,8,8,8&seed=0.67177&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=true&cosY=false&sinY=true&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=false&percTrainData_hide=true&batchSize_hide=true&noise_hide=false&numHiddenLayers_hide=false&problem_hide=true&dataset_hide=false

Cornell Bowers CiIS
What is Regularization?

Regularization refers to techniques used to prevent machine learning models from
overfitting in order to minimize loss function.

Models that overfit can have large generalization gaps.

Error

A

Test error

SN

Regime #1

Regime #2

\_/Acceptable test error €

Training error

v

# Training instances

Comparing Error and Number of Training Instances
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Regularizers

Regularizers are used to quantify the complexity of a model.
Empirical Risk Minimization:

w = arg min L(w ZEW X;)

W
Regularized Empirical Risk Minimization:

w = argmin L(W) + A - r(w)

W

where r(w) is some measure of model complexity that we want to control.
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Regularizers

Regularizers are used to quantify the complexity of a model.

Input Layer

R

Deep net
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L2 Regularization

The most widely used regularization technique

Standard loss function:
1
L(we) =5 Z O(We, X;)
1€EBy
Loss function with L2 regularization:

€

A
L1 (wi) = L(we) + S llwill2
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Effect of L2 Regularization

Loss function with L2 regularization:

A
Lr%(wi) = L(we) + G l[will2

Gradient of L2-regularized loss:
VL (wy) = VL(Wy) + Awy
Gradient descent update:
Wi = Wy — aVL(wy)
Gradient descent update with L2 regularization:

Wil = W — aVEreg(wt)
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L1 Regularization

wlh

Loss function with L1 regularization:

Lr%(ws) = L(ws) + M well |
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Discuss: What does the gradient update look like with L1
regularization?
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Demo: L1/L2 Regularization

Tensorflow Playground



https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.1&regularizationRate=0.01&noise=0&networkShape=&seed=0.90404&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=true&xSquared=true&ySquared=true&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=false
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Weight Decay

Gradient descent update:

Wi1 = (]. — )\)wt = O(VL(’UJt)

Weight decay explicitly decays the weights towards 0 at each step
W41 — (]. — )\)wt — OéVL(’LUt)

Typically set decay coefficient near zero, e.g. A = 0.01
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Connection Between Weight Decay and L2 Regularization

Gradient descent update with L2 regularization:

A
ﬁreg(wt) - E(Wt) + 20

w12

Wil — Wi — aVﬁreg(Wt) = W — &Vﬁ(wt) — CM)\()Wt

Gradient descent update with weight decay:

Wii1 = (1 — )\1)Wt — OéVﬁ(Wt) = Wt — OéVE(Wt) — )\1Wt

L2 regularization and weight decay are equivalent with \{ = a)g
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Connection Between Weight Decay and L2 Regularization

Are weight decay and L2 regularization equivalent in general?

Wil — Wi — avcreg(wt) = Wt — aVﬁ(Wt) — a)\()Wt

Wil = (1 — )\1)Wt — QVL(Wt) = Wt — aVE(Wt) — )\1Wt




Cornell Bowers C1IS

AdamW

Algorithm 2 ' Adam with Ly regularization and Adam with decoupled weight decay (AdamW)

given oo = 0.001, 5, = 0.9,8: = 0.999,e =103, A e R
initialize time step ¢ <— 0, parameter vector 8:—o € IR", first moment vector m:—o < 0, second moment
vector vi—g < 0, schedule multiplier n:—0 € R

N =

3: repeat

4: tet+1

5. Vfi(B:-1) < SelectBatch(6;:_1) > select batch and return the corresponding gradient

6: g, Vfe(Oi—1) +A0:i—1

7. my < Bimi_1 + (1 — B1)g, > here and below all operations are element-wise

8: Vi < Bavi—1 + (1 — ﬁz)gf

9:  fy < my/(1— BY) > i is taken to the power of ¢
10: ¥ < vi/(1— B%) > [ is taken to the power of ¢
11:  m « SetScheduleMultiplier(¢) > can be fixed, decay, or also be used for warm restarts

120 0, Oey — i (ouine/(v/5: + ) 701 )
13: until stopping criterion is met
14: return optimized parameters 0
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Adam w/ L2 Regularization vs Adam w/ Weight Decay (AdamW)

e Weight decay is more effective than L2 regularization when using Adam

T

Adam and AdamW with LR=0.001 and different weight decays Adgm and AdamW with LR=0.001 and different weight decays
10 : : : ; s ; ; i T T T T

Test error (%)
A o
[6)} (6] (&)}

N

Training loss (cross-entropy)

3.5¢F
—— Adam
10 —— AdamW
1 1 f 1 1 1 1 1 o) 3 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

Epochs Epochs
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Adam w/ L2 Regularization vs Adam w/ Weight Decay (AdamW)

e Weight decay is more effective than L2 regularization when using Adam

6.5 T 5 T
—5— Adam O Adam
6 —=— AdamW L AdamW
55+ 2 . 45r
= 9
5 5 g
5 5 4l
7 45 2
= s
4 L
3.5¢
> B\S\E/E\B/Z/E _
3 7 I—6 I-s ‘4 5
10 10 10 10 10 3

Weight decay for Adam

10 10° 10 10"
Normalized weight decay times 10 for Adamw

Training loss (cross-entropy)
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Optimizers Recap

Gradient Descent
o Vanilla, costly, but for best convergence rate

Stochastic Gradient Descent
o  Simple, lightweight

Mini-batch SGD
o  balanced between SGD and GD
o  1st choice for small, simple models

SGD w. Momentum
o  Faster, capable to jump out local minimum

AdaGrad
RMSProp

Adam
o Just use Adam if you don’t know what to use
in deep learning
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(Updated) Optimizers Recap

e Gradient Descent
o Vanilla, costly, but for best convergence rate

e Stochastic Gradient Descent
o  Simple, lightweight

e Mini-batch SGD
o  balanced between SGD and GD
o  1st choice for small, simple models

e S5SGD w. Momentum
o  Faster, capable to jump out local minimum

AdaGrad
RMSProp
Adam

AdamWw
o Just use AdamW if you don’t know what to
use in deep learning
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Discuss: Image Classification

How can we make a model for image classification more robust?

Can we augment the training data without annotating more images?

Horizontal Flip

https://imgaug.readthedocs.io/en/latest/index.html
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Discuss: Text Classification

How can we make a model for sentiment classification more robust?

Can we augment the training data without annotating more examples?

Positive Movie Review:
Still, this flick is fun, and host to some truly excellent sequences.

Negative Movie Review:
begins with promise , but runs aground after being snared in its own tangled plot .
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Dropout

In each forward pass, randomly set some neurons to zero.

Probability of dropping is a hyperparameter; p=0.5 is common.

Dropout Layer

Input Layer

o e
o o

¢ 00

Deep Net with Dropout Layer
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Implementing Dropout

Input Layer Input Layer

el
O

\
XXXY

O 2\

%
7:§
»

s

9.
@
L d
L

Standard deep net with two hidden layers Deep net produced by applying dropout.
Crossed units have been dropped
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Why is Dropout a good idea?

Dropout forces the network to have a redundant representation, which prevents

co-adaptation of features.

is furry

has a tailﬁ\

____—" catscore

has orange fur

has claws
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Why is Dropout a good idea?

e Anotherinterpretation: Dropout trains a large
ensemble of models with shared weights

e Each dropout mask corresponds to a different
“model” within the ensemble.

e Afully connected layer with 4096 units has

2409%~101233 possible masks!
o  Only ~10% atoms in the universe

http://cs231n.stanford.edu/slides/2018/cs231n_2018 lectureQ7.pdf
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Dropout During Test Time

Use all of the neurons in the network

Does this introduce any problems?

Dropout Layer Dropout Layer

K

P

Training Time Test Time

Input Layer

o000
000
¢0 060
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Dropout During Test Time

Need to re-scale activations so they are the same (in expectation) during training and
testing

Consider a single neuron.

At test time we have: E[a] = W1ZT + w2y

During training we have: g[4] :%(wlx + way) + i(wlx + 0y)

I 1

At test time, multiply

1
by dropout probability =§(w1x + way)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf
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Effectiveness of Dropout

e Improves generalization of neural
nets when training with limited data

2.5H

2.0

Classification Error %

1.5F

| Witho@t dropoilt

UL A N AN A A e
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

! 1 i i
200000 400000 600000 800000 1000000

Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each

with 1024 to 2048 units.

“Dropout: A Simple Way to Prevent Neural Networks

from Overfitting” by Srivastava et al., 2014
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Early Stopping
A
Error
Validation
Training
: 5
early stopping Epochs

e Pickthe training checkpoint with the strongest validation performance
e Easytoimplement, should use by default

https://wandb.ai/ayush-thakur/huggingface/reports/Examples-of-Early-Stopping-in-HuggingFace-Transformers--VmlldzoOMzE2MTM
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Batch Normalization

Batch Normalization normalizes the intermediate features in neural networks.

We standardize the inputs to each layer by normalizing the output of the prior layer

Input Layer

00 000
#9040
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Why should we standardize data?

e Standardization ensures all features have a similar scale
o Beneficial for optimization

e We do not know a priori which features will be relevant and we do not want to
penalize or upweight features
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Example: Predicting house sale price

Bedrooms:1to5 W,

Square footage: 0 to 2000 square feet W,

w N

2
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The Batch
Normalization
Algorithm

Input: Values of x over a mini-batch: B = {x1. ., };
Parameters to be learned: v, 3

Output: {y; = BN, g(z;)}

1 « .

Up — — Z T4 // mini-batch mean
m =i
1 m

2 2 .« s .
— — i — // -batch

o — ;(x “B) mini-batch variance

T; Ti  HB // normalize
V0% +e€

Y; — ¥x; + B = BN, g(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.
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BatchNorm: Inference Behavior

e Model inference should be deterministic
o Normalization depends on the elements in the batch

e Solution: Use running average statistics calculated during training as:

,uinf = AMtinf + (1 — A s
1nf )‘alnf + (1 o )‘)0-123
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Batch Normalization

Input Layer
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Benefits of batch normalization

“Understanding Batch Normalization” by Bjorck et al. 2018

Improves conditioning of the network and enables using a larger learning rate
o  Benefit of batch norm disappears at small learning rates!
o Large learning rate improves generalization
100
90 -
95 1
85 |
90 4
o > 80 1
© 85 ©
> é 751
E 4 70,
g & 2 s
= ol —— Ir=0.003 (with BN) —— 1r=0.003 (with BN)
—— Ir=0.1 (with BN) 60 - —— Ir=0.1 (with BN)
6. —— Ir=0.0001 (with BN) —— 1r=0.0001 (with BN)
—— Ir=0.0001 (w/o BN) 55 —— 1r=0.0001 (w/o BN)
60 4, : : : : , L , : , , ,
0 20 40 60 80 100 0 20 40 60 80 100
% of training % of training
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Why does a large learning rate help?

e Noise of the gradient estimate scales with the learning rate (Bjorck et al. 2018)

aVsap(z) = aVe(z %2 ((z))

gradient

N

E|ig 2icp (Vli(z) = VL(z))] =0 C=E[||Vi(z) — Vi(z)|]?]

2

E[HaVE(a:) — OAVSGD(.’E)||2] < EC
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Why does a large learning rate help?

e Noise of the gradient estimate scales with the learning rate (Bjorck et al. 2018)
e Large learning rates have noisier updates

o  Actually improves generalization
e Large learningrate acts like a regularizer

2

E[|aVé(z) — aVsap(z)|*] < @C
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Conceptual Sketch

Noisy updates are good at escaping sharp minima

[
Flatter minima generalize better

Training Function

! Testing Function

Sharp Minimum

Flat Minimum

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss

function and the X-axis the variables (parameters)

“On Large-Batch Training for Deep Learning: Generalization Gap and Sharp

Minima” by Keskar et al., 2017

“Visualizing the Loss Landscape of Neural
Nets” by Li et al., 2017
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Why does a large learning rate help?

Noise of the gradient estimate scales
with the learning rate (Bjorck et al.
2018)

Add Gaussian noise to the activations

of a neural net during training
o Improves performance when using low
learning rates (Li et al., 2019)

O
o
r

(o]
o

~
o

m—— |arge Ir
m— small Ir
= small Ir, noise

Clean Validation Accuracy
B (o)}
o o

w
o
- BN S N S . -

w
o

0 10 20 30 40 50 60
Epoch

“Towards Explaining the Regularization Effect of Initial Large
Learning Rate in Training Neural Networks” by Li et al., 2019
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Many Kinds of Normalization Layers

Batch Norm Layer Norm Instance Norm Group Norm

H,W

LGS LS

H,W

P T G A

NN NN

AN

N S
Z SR

N
Normalization Methods

“Group Normalization” by Wu et al., 2018
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Layer Normalization

Layer Norm

Batch Norm

RVEVAE IR

L RTR R

T A

L 7 7 770
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Instance Normalization

Instance Norm

Batch Norm

NN N 2\

VAT AW AT AT
LTy O

Vi T T
P

M‘H
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Normalization Layers

Normalization layers improve training stability

Can train with larger learning rates

Faster training
A large learning rate acts as an implicit regularizer

(@)

Better generalization

(@)
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Convex vs. Non-Convex Optimization

e Convex optimization: Only one global minima
o Gradient descent is guaranteed to find it
o  Optimization is all about getting there quickly
e Non-Convex optimization: Many different minima (and saddle points)

o  No theoretical guarantees!
o Different optimization algorithms will find different minima

—— Gradient descent Training Function

) .
Min = 1.9500000000000002 i . .

| Testing Function
1

f(z)

Flat Minimum Sharp Minimum

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss
function and the X-axis the variables (parameters)
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Algorithmic Regularization

e Traditional regularization adds explicit penalties (e.g., L1/L2 norm) to the loss

e Algorithmic regularization results from the optimization process itself
o Verydifferent from convex optimization!

Algorithmic Regularization:

w = argmin L(W) + A - 74 (W)

A%

where r (W) is some measure of model complexity implicitly controlled by the
learning algorithm, A
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Non-Convex Optimization

Non-Convex optimization: Many different minima (and saddle points)

Different optimization algorithms will find different minima

o
O
Training algorithms are biased towards “flatter” minima that generalize well

o
Training Function
| ' Testing Function

I
I
1
I

f(=)

L

Sharp Minimum

Flat Minimum

‘On Large-Batch Training for Deep Learning: Generalization Gap and Sharp

“Visualizing the Loss Landscape of Neural ‘
Minima” by Keskar et al., 2017

Nets” by Li et al., 2017
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Zhang et al. (2017 ) Memorization Experiment

under-fitting over-fitting

e “Deep neural networks easily fit random labels” et ke
'M '
(Zhang et al., 2017) é '
N I
~ o« ‘Training risk
sweet spot\‘. S -
Capacity of H
model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 - yes 100.0 86.03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1049402 10 10 100.0 82.00
(fitting random labels) no no 100.0 10.12

“‘Understanding deep learning requires rethinking generalization” by Zhang et al., 2017
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Zhang et al. (2017 ) Memorization Experiment

under-fitting over-fitting

e “Explicit reqularization may improve generalization et ke
. . . 4 :
performance, but is neither necessary nor by itself .Q% '
sufficient for controlling generalization error.” N :
~ _ Traini i<k
(Zhang et al., 2017) sweet spot\:: \al\nlng e
Capacity of H B
model # params random crop weight decay train accuracy test accuracy
yes yes 100.0 89.05
: yes no 100.0 89.31
Inception 1,649,402 - yes 100.0 86.03
no no 100.0 85.75
(fitting random labels) no no 100.0 9.78
Inception w/o no yes 100.0 83.00
BatchNorm 1049402 1o 10 100.0 82.00
(fitting random labels) no no 100.0 10.12

“‘Understanding deep learning requires rethinking generalization” by Zhang et al., 2017
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Deep Double Descent

e Neural networks can exhibit a double descent curve in practice

under-parameterized

under-fitting over-fitting over-parameterized

. Test risk Test risk
"% % “classical” “modern”
E Q?: regime interpolating regime
N : .
~ o Training risk ~ Training risk:
sweet spot\:. = S~ . _interpolation threshold
Capacity of H Capacity of H

() (b)

“Reconciling modern machine learning practice and the bias-variance trade-of”, by Beklin et al. (2019)
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Deep Double Descent

e In-depth empirical study observed double descent with modern architectures
(ResNet, Transformers) and tasks (image classification, machine translation)

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
A
S 1
0.5 ; Critical — Test 0.7 ____ Optimal Early
o) : Regime -~ Train » Stopping
—
0 0.4 & . 0.6 10
= - £ =
© 0.3 \ : w 0.5 S
~ \ 1 Interpolation % 100 8
0.2 ! Threshold V0.4 w
g7 \ 1 =
'0_) 0.1 \: 0.3 1000
I\\\
20 1 10 20 30 40 50 60 e 0 10 20 30 40 50 60
ResNet18 width parameter ResNet18 Width Parameter

“‘Deep Double Descent: Where Bigger Models and More Data Hurt”, by Nakkiran et al., 2019
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Regularization in the Interpolation Regime

over-parameterized

under-parameterized /)

Test risk

“classical”
regime

e Many solutions that perfectly fit the data
e Increasing the capacity of the hypothesis E
class means we can find a “simpler”

“modern”

Training risk:

interpolating regime

solution T s e e S

Capacity of H

(b)

Regularization in the interpolation regime (L(h) = 0):

h=argmin L(h)+ A-r(h) =~ argmin r(h)
heH he{h:L(h)=x0}

where r(h) is some measure of complexity

“Reconciling modern machine learning practice and the bias-variance trade-of”, by Beklin et al. (2019)
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Gradient Clipping

Without clipping With clipping

e Exploding gradients resultin

J(w,b)

unstable training :
e Optimization is hard when you have \/
b

very large gradients

Gradient clipping algorithm:
if |g|| > 7: 7: Max gradient norm
g T
g =178
gl

https://neptune.ai/blog/understanding-gradient-clipping-and-how-it-can-fix-exploding-gradients-problem

J(w.b)
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Regularization and Data Augmentation

e Regularization and data 90% -
augmentation are really effective!

e Can be worth millions of additional 5%

training images 80% -

75%

70% -

65%

60%

ImageNet top-1 accuracy after fine-tuning

-

m—— ViT-B/32
== ViT-B/16
= ViT-L/16

1.28M

128M+AugReg  13M  13M+AugReg  300M

Pre-training dataset size

How to train your ViT? Data, Augmentation,and Regularization in Vision Transformers, Steiner et al. 2022
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Recap

e Use acombination of various regularization techniques to improve generalization

o L1/L2regularization, dropout, etc.

e Thetraining algorithm itself (e.g. SGD) is a critical regularizer in deep learning

e Neural networks are expressive enough to memorize the training data and fail to

generalize
o  Generalize extremely well in practice
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First Homework!

e We arereleasing the first homework assignment by tomorrow

o  Covers optimization (this week) and CNNs (next week)
o Duetwo weeks from now

e Two components:

o  Written problems
o Coding project
m Use Google Colab

e Workonitin groups of two

e Startearly!
o  Cando most of the written assignment

e AskquestionsonEd
e Office hours posted on the website
e Will be submitted on Gradescope!




