

Cornell Bowers C·IS College of Computing and Information Science

Optimization

CS4782: Intro to Deep Learning

Quiz on Canvas! (code-1234)

Cornell Bowers C·IS Agenda

Backpropagation

• Optimizers

- Gradient Descent
- Stochastic Gradient Descent
- SGD w. Momentum
- AdaGrad
- RMSProp
- Adam
- Learning rate scheduling
- Hyperparameter Optimization

Recap

MLPs can learn complex decision boundaries!

Forward Pass - MLP

 $\mathbf{z}^{[0]} = \mathbf{x}$

Cornell Bowers C·IS Discuss

What are the dimensions of W^[1] and b^[1]?

x: (2, 1)

 $W^{[1]}:$

 $b^{[1]}$:

a^[1]:

Cornell Bowers C·IS Discuss

What are the dimensions of W^[1] and b^[1]?

x: (2, 1)

W^[1]: (3, 2)

b^[1]: (3, 1)

a^[1]: (3, 1)

Forward Pass - MLP

 $\mathbf{z}^{[0]} = \mathbf{x} \qquad \mathbf{z}^{[1]} = \sigma(\mathbf{a}^{[1]})$

Forward Pass - MLP

Forward Pass - MLP

Algorithm Forward Pass through MLP1: Input: input x, weight matrices $\mathbf{W}^{[1]}, \ldots, \mathbf{W}^{[L]}$, bias vectors $\mathbf{b}^{[1]}, \ldots, \mathbf{b}^{[L]}$ 2: $\mathbf{z}^{[0]} = \mathbf{x}$ > Initialize input3: for l = 1 to L do>4: $\mathbf{a}^{[l]} = \mathbf{W}^{[l]}\mathbf{z}^{[l-1]} + \mathbf{b}^{[l]}$ > Linear transformation5: $\mathbf{z}^{[l]} = \sigma^{[l]}(\mathbf{a}^{[l]})$ > Nonlinear activation6: end for7: Output: $\mathbf{z}^{[L]}$

Backpropagation- MLPs

Algorithm Backward Pass through MLP (Detailed) 1: Input: $\{\mathbf{z}^{[1]}, \ldots, \mathbf{z}^{[L]}\}, \{\mathbf{a}^{[1]}, \ldots, \mathbf{a}^{[L]}\}, \text{ loss gradient } \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}}$ 2: $\delta^{[L]} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \frac{\partial \mathbf{z}^{[L]}}{\partial \mathbf{z}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \odot \sigma^{[L]'}(\mathbf{a}^{[L]})$ \triangleright Error term 3: for l = L to 1 do 4: $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{W}^{[l]}} = \delta^{[l]} (\mathbf{z}^{[l-1]})^T$ \triangleright Gradient of weights 5: $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{b}^{[l]}} = \delta^{[l]}$ \triangleright Gradient of biases 6: $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{z}^{[l-1]}} = (\mathbf{W}^{[l]})^T \delta^{[l]}$ $\delta^{[l-1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} \frac{\partial \mathbf{z}^{[l-1]}}{\partial \mathbf{z}^{[l-1]}} = ((\mathbf{W}^{[l]})^T \delta^{[l]}) \odot \sigma^{[l-1]'}(\mathbf{a}^{[l-1]})$ 7: 8: end for 9: Output: $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1:L]}}, \frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[1:L]}}$

Backpropagation- MLPs

Algorithm Backward Pass through MLP

1: Input:
$$\{\mathbf{z}^{[1]}, \dots, \mathbf{z}^{[L]}\}, \{\mathbf{a}^{[1]}, \dots, \mathbf{a}^{[L]}\}, \text{loss gradient } \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}}$$

2: $\delta^{[L]} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \odot \sigma^{[L]'}(\mathbf{a}^{[L]})$ \triangleright Error term
3: for $l = L$ to 1 do
4: $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = \delta^{[l]}(\mathbf{z}^{[l-1]})^T$ \triangleright Gradient of weights
5: $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \delta^{[l]}$ \triangleright Gradient of biases
6: $\delta^{[l-1]} = ((\mathbf{W}^{[l]})^T \delta^{[l]}) \odot \sigma^{[l-1]'}(\mathbf{a}^{[l-1]})$
7: end for
8: Output: $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1:L]}}, \frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[1:L]}}$

Discuss: Activation functions

- How do different activation functions behave during backprop?
 - Visualize their derivatives!

What is Optimization?

In deep learning, optimization methods attempt to find model weights that **minimize the loss function**.

Cornell Bowers CIS Loss function

Empirical Risk:

$$\mathcal{L}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1,\dots,n} \ell(\mathbf{w}_t, \mathbf{x}_i)$$

t : at time step t

 \mathbf{w}_t Model weights (parameters) at time t \mathbf{x}_i The i-th input training data

 \mathcal{L} : the Loss function (optimization target) ℓ : per-sample loss

Gradient Descent (GD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

 α : the learning rate

 $abla \mathcal{L}(\mathbf{w}_t)$: the gradient of Loss w.r.t. \mathbf{w}_t

What are some potential problems with gradient descent?

Cornell Bowers CIS Convexity

- A function on a graph is **convex** if a line segment drawn through any two points on the line of the function, then it never lies below the curved line segment
- Convexity implies that every local minimum is **global minimum**.
- Neural networks are **not** convex!

Challenges in Non-Convex Optimization

Local Minima vs. Global Minima

Saddle Points

Vanishing gradient

Gradient Descent (GD)

$$\mathcal{L}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}_t, \mathbf{x}_i)$$
$$\nabla \mathcal{L}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Full gradient: O(n) time => **Too expensive!**

• Statistically, why don't we use 1 or a few samples from the training dataset to approximate the full gradient?

Gradient Descent (GD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Gradient Descent (GD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Select 1 example randomly each time

Gradient Descent (GD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Select 1 example randomly each time

Per-sample gradient is equivalent to full gradient in expectation!

$$\mathbb{E}[\nabla \ell(\mathbf{w}_t, \mathbf{x}_i)] = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}_t, \mathbf{x}_i) = \nabla \mathcal{L}(\mathbf{w}_t)$$

Stochastic Gradient Descent (SGD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Select **1** example randomly each time
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Per-sample gradient is equivalent to full gradient in expectation!

$$\mathbb{E}[\nabla \ell(\mathbf{w}_t, \mathbf{x}_i)] = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}_t, \mathbf{x}_i) = \nabla \mathcal{L}(\mathbf{w}_t)$$

Stochastic Gradient Descent (SGD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

| Select 1 example randomly each time
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Trade off convergence!

Per-sample gradients not necessarily points to the local minimum, introducing a **noise ball**...

Stochastic Gradient Descent (SGD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

| Select 1 example randomly each time
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Select a batch ${\cal B}_t$ of examples randomly each time, with *batch size* b

Cornell Bowers C·IS Minibatch SGD

Best of both worlds: Computational and Statistical!

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{1}{b} \sum_{i \in \mathcal{B}_t} \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Let's look at an example!

Local Minimum

SGD with Momentum (Polyak, 1964)

Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

SGD with Momentum (Polyak, 1964)

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

SGD with Momentum (Polyak, 1964)

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

SGD Update Rule $\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$ $\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$ $\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$

where $\mu \in [0, 1]$ is the momentum coefficient.

SGD with Momentum (Polyak, 1964)

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

where $\mu \in [0, 1]$ is the momentum coefficient.

SGD with Momentum

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

 $\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$ $\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$

SGD with Momentum

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

 $\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$ $\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$ $\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$

Cornell Bowers C⁻IS

SGD with Momentum

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

 $\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$ $\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$ $\mathbf{w}_{t+1} = \mathbf{w}_t + \mu \mathbf{m}_t - \alpha \mathbf{g}_t$

SGD with Momentum

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

 $\mathbf{g}_{t} = \nabla l(\mathbf{w}_{t}; \mathbf{x}_{i})$ $\mathbf{m}_{t+1} = \mu \mathbf{m}_{t} - \alpha \mathbf{g}_{t}$ $\mathbf{w}_{t+1} = \mathbf{w}_{t} + \mu \mathbf{m}_{t} - \alpha \mathbf{g}_{t}$ $= \mathbf{w}_{t} + \mu(\mu \mathbf{m}_{t-1} - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_{t}$

SGD with Momentum

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

> $\mathbf{g}_{t} = \nabla l(\mathbf{w}_{t}; \mathbf{x}_{i})$ $\mathbf{m}_{t+1} = \mu \mathbf{m}_{t} - \alpha \mathbf{g}_{t}$ $\mathbf{w}_{t+1} = \mathbf{w}_{t} + \mu \mathbf{m}_{t} - \alpha \mathbf{g}_{t}$ $= \mathbf{w}_{t} + \mu(\mu \mathbf{m}_{t-1} - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_{t}$ $= \mathbf{w}_{t} + \mu(\mu(\mu \mathbf{m}_{t-2} - \alpha \mathbf{g}_{t-2}) - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_{t}$ $= \mathbf{w}_{t} - \alpha \mathbf{g}_{t} - \mu \alpha \mathbf{g}_{t-1} - \mu^{2} \alpha \mathbf{g}_{t-2} - \mu^{3} \alpha \mathbf{g}_{t-3} - \dots$

Cornell Bowers C^IS

SGD with Momentum

Compute an **Exponentially Weighted Moving Average** (EWMA) of the gradients as **momentum** and use that to update the weight instead.

> $\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$ $\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$ $\mathbf{w}_{t+1} = \mathbf{w}_t + \mu \mathbf{m}_t - \alpha \mathbf{g}_t$ $= \mathbf{w}_t + \mu(\mu \mathbf{m}_{t-1} - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_t$ $= \mathbf{w}_t + \mu(\mu(\mu \mathbf{m}_{t-2} - \alpha \mathbf{g}_{t-2}) - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_t$ $= \mathbf{w}_t - \alpha \mathbf{g}_t - \mu \alpha \mathbf{g}_{t-1} - \mu^2 \alpha \mathbf{g}_{t-2} - \mu^3 \alpha \mathbf{g}_{t-3} - \dots$ $= \mathbf{w}_t - \alpha \sum_{i} \mu^i \mathbf{g}_{t-i}$

M.M.

mer,

 $-d: \nabla l(w_{b}; x_{i})$

Momentum converges almost always faster than standard SGD!

Quick Recap

Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

00

Stochastic Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Minibatch SGD

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{1}{b} \sum_{i \in \mathcal{B}_t} \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

SGD w. Momentum

$$m_{t+1} = \mu m_t - \alpha \nabla l(w_t; x_i)$$
$$w_{t+1} = w_t + m_{t+1}$$

Importance of Learning Rate

Another example

Adaptive Learning Rate

 $\alpha = 0.05$ $\alpha = 0.015$ $\alpha_{x} = 0.015$ and $\alpha_{y} = 0.05$

Maybe we don't want the **SAME learning rate** for **ALL ELEMENTS** of the Weight!

Adaptive Optimizers

Different Learning Rate for each element of the Model Weights!

AdaGrad (Duchi et al. 2011)

More updates -> more decay

- Handle sparse gradients well
 - Sparse: The vector has 0 in most of the entries

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

SGD

Adagrad

Gradient Descent AdaGrad

AdaGrad (Duchi et al. 2011)

More updates \rightarrow more decay

- Handle sparse gradients well
 - Sparse: The vector has 0 in most of the entries

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

GD

Adagrad

Exercise: What's could be wrong with this optimizator? (What would happen to the denominator.)

AdaGrad (Duchi et al. 2011)

More updates \rightarrow more decay

- Handle sparse gradients well
 - Sparse: The vector has 0 in most of the entries

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

GD

Adagrad

Issue: decays too aggressively!

RMSProp (Graves, 2013)

Keep an exponential moving average of the squared gradient for each element

$$\mathbf{v}_{t+1} = \mathbf{v}_t + \mathbf{g}_t^2 \qquad \mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1-\beta)\mathbf{g}_t^2 \mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t \qquad \mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

Adagrad

RmsProp

where $\beta \in [0,1]$ the exponential moving average constant.

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

Momentum

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}_t^2$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

RMSProp

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

Momentum

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}_t^2$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

RMSProp

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}_t^2$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

$$\mathbf{v}_{t+1} = \beta_2 \mathbf{v}_t + (1 - \beta_2) \mathbf{g}_t^2$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\widehat{\mathbf{v}}_{t+1} + \epsilon}} \odot \widehat{\mathbf{m}}_{t+1}$$

ADAM

(Adaptive Moment Estimate)

RMSProp

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

Momentum

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

RMSProp

ADAM (Adaptive Moment Estimate)

ADAM (Adaptive Moment Estimate)

Optimizers Recap

- Gradient Descent
 - Vanilla, costly, but for best convergence rate
- Stochastic Gradient Descent
 - Simple, lightweight
- Mini-batch SGD
 - balanced between SGD and GD
 - 1st choice for small, simple models
- SGD w. Momentum
 - Faster, capable to jump out local minimum
- AdaGrad
- RMSProp
- ADAM
 - JUST USE ADAM IF YOU DON'T KNOW WHAT TO USE IN DEEP LEARNING

No!

But are they equivalent somehow?

There are *many* minimizers of the training loss The **optimizer** determines which minimizer you converge to

Learning Rate Scheduling

OPT: Open Pre-trained Transformer Language Models

OPT is an open source LLM like GPT-4 from Meta.

For large models like OPT-175B, more engineering efforts are needed.

Figure 1: **Empirical LR schedule.** We found that lowering learning rate was helpful for avoiding instabilities.

Hyperparameters

- Learning rate
- Batch size
- Beta1 & beta2 of adam
- Regularization strength

These are all hyperparameters that affect performance!

Source: https://cs231n.github.io/neural-networks-3/

Hyperparameter Optimization (HPO)

- Learning rate
- Batch size
- Beta1 & beta2 of adam
- Regularization strength

These are all hyperparameters that affects performance!

Random search HPO is the efficient and simple way to start!

Unimportant parameter

Important parameter (b) Random Search

Summary

- **Optimization** tries to obtain the model weights that **minimize the loss function**.
- Adam is often a good default optimizer in deep learning
- The learning rate usually needs to be tuned carefully
- A monotonically **decreasing learning rate scheduler** with a **warmup** is a good default choice
- **Random search** HPO is the **efficient** and **simple** way to start!