

Decision Trees
Cornell CS 4/5780

Motivation for Decision Trees

Let us return to the k-nearest neighbor classifier. In low dimensions it is actually
quite powerful: It can learn non-linear decision boundaries and naturally can
handle multi-class problems. There are however a few catches: kNN uses a lot of
storage (as we are required to store the entire training data), the more training
data we have the slower it becomes during testing (as we need to compute
distances to all training inputs), and finally we need a good distance metric.

Most data that is interesting has some inherent structure. In the k-NN case we
make the assumption that similar inputs have similar neighbors. This would
imply that data points of various classes are not randomly sprinkled across the
space, but instead appear in clusters of more or less homogeneous class
assignments. Although there are efficient data structures enable faster nearest
neighbor search, it is important to remember that the ultimate goal of the
classifier is simply to give an accurate prediction. Imagine a binary classification
problem with positive and negative class labels. If you knew that a test point falls
into a cluster of 1 million points with all positive label, you would know that its
neighbors will be positive even before you compute the distances to each one of
these million distances. It is therefore sufficient to simply know that the test
point is an area where all neighbors are positive, its exact identity is irrelevant.

Decision trees are exploiting exactly that. Here, we do not store the training data,
instead we use the training data to build a tree structure that recursively divides
the space into regions with similar labels. The root node of the tree represents the
entire data set. This set is then split roughly in half along one dimension by a
simple threshold . All points that have a feature value fall into the right child
node, all the others into the left child node. The threshold and the dimension
are chosen so that the resulting child nodes are purer in terms of class
membership. Ideally all positive points fall into one child node and all negative
points in the other. If this is the case, the tree is done. If not, the leaf nodes are
again split until eventually all leaves are pure (i.e. all its data points contain the
same label) or cannot be split any further (in the rare case with two identical
points of different labels).

Decision trees have several nice advantages over nearest neighbor algorithms: 1.
once the tree is constructed, the training data does not need to be stored. Instead,
we can simply store how many points of each label ended up in each leaf -
typically these are pure so we just have to store the label of all points; 2. decision
trees are very fast during test time, as test inputs simply need to traverse down

t ≥ t

t

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2024Spring/WebSite/lectures/lecturenote02_kNN.html
file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2024Spring/WebSite/lectures/lecturenote16.html

the tree to a leaf - the prediction is the majority label of the leaf; 3. decision trees
require no metric because the splits are based on feature thresholds and not
distances.

Binary decision tree. Only labels are stored.

New goal: Build a tree that is:

1. Maximally compact
2. Only has pure leaves

Quiz: Is it always possible to find a consistent tree?
Yes, if and only if no two input vectors have identical features but different labels
Bad News! Finding a minimum size tree is NP-Hard!!
Good News: We can approximate it very effectively with a greedy strategy. We
keep splitting the data to minimize an impurity function that measures label
purity amongst the children.

Impurity Functions

Data: , where is the number of
classes

Gini impurity

Let where (all inputs with labels)

Define:

Note: This is different from Gini coefficient. See Gini impurity (not to be
confused with the Gini Coefficient) of a leaf:

S = {(x1, y1), … , (xn, yn)}, yi ∈ {1, … , c} c

Sk ⊆ S Sk = {(x, y) ∈ S : y = k} k

S = S1 ∪ ⋯ ∪ Sc

pk =
|Sk|

|S|
← fraction of inputs in S with label k

G(S) =
c

∑
k=1

pk(1 − pk)

https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity
http://en.wikipedia.org/wiki/Gini_coefficient

Fig: The Gini Impurity Function in the binary case reaches its maximum at
.

Gini impurity of a tree:

where:

Entropy

Let be defined as before. We know what we don't want (Uniform
Distribution): This is the worst case since each leaf is
equally likely. Prediction is random guessing. Define the impurity as how close
we are to uniform. Use -Divergence to compute "closeness"
Note: -Divergence is not a metric because it is not symmetric, i.e.,

.
Let be the uniform label/distribution. i.e.

p = 0.5

GT (S) =
|SL|

|S|
GT (SL) +

|SR|

|S|
GT (SR)

(S = SL ∪ SR)

SL ∩ SR = ∅

|SL|
|S| ← fraction of inputs in left substree

|SR|

|S| ← fraction of inputs in right substree

p1, … , pk

p1 = p2 = ⋯ = pc = 1
c

KL

KL

KL(p||q) ≠ KL(q||p)

q1, … , qc qk = 1
c ∀k

KL(p||q) =
c

∑
k=1

pk log(
pk

qk

) ≥ 0 ← KL-Divergence

= ∑
k

pk log(pk) − pk log(qk) where qk =
1

c

= ∑
k

pk log(pk) + pk log(c)

= ∑
k

pk log(pk) + log(c)∑
k

pk where log(c) ← constant,∑
k

pk = 1

Entropy over tree:

ID3-Algorithm

Base Cases:

The Equation above indicates the ID3 algorithm stop under two cases. The first
case is that all the data points in a subset of have the same label. If this happens,
we should stop splitting the subset and create a leaf with label . The other case is
there are no more attributes could be used to split the subset. Then we create a
leaf and label it with the most common .

Try all features and all possible splits. Pick the split that minimizes impurity
 where feature and threshold

Recursion:

Quiz: Why don't we stop if no split can improve impurity?
Example: XOR

max
p

KL(p||q) = max
p
∑

k

pk log(pk)

= min
p

−∑
k

pk log(pk)

= min
p

H(s) ← Entropy

H(S) = pLH(S L) + pRH(S R)

pL =
|S L|

|S|
, pR =

|S R|

|S|

ID3(S) : {
if ∃ȳ s.t. ∀(x, y) ∈ S, y = ȳ ⇒ return leaf with label ȳ

if ∃x̄ s.t. ∀(x, y) ∈ S, x = x̄ ⇒ return leaf with mode(y : (x, y) ∈ S) or mean (reg

y

y

(e.g. s > t) f ← t ←

Define: []
S L = {(x, y) ∈ S : xf ≤ t}

S R = {(x, y) ∈ S : xf > t}

Fig 4: Example XOR

First split does not improve impurity
Decision trees are myopic

Regression Trees

CART: Classification and Regression Trees

Assume labels are continuous:
Impurity: Squared Loss

At leaves, predict . Finding best split only costs .

yi ∈ R

L(S) =
1

|S|
∑

(x,y)∈S

(y − ȳS)2 ← Average squared difference from average label

where ȳS =
1

|S|
∑

(x,y)∈S

y ← Average label

ȳS O(n log n)

Fig: CART

CART summary:

CART are very light weight classifiers
Very fast during testing
Usually not competitive in accuracy but can become very strong through
bagging (Random Forests) and boosting (Gradient Boosted Trees)

Fig: ID3-trees are prone to overfitting as the tree depth increases. The left
plot shows the learned decision boundary of a binary data set drawn from
two Gaussian distributions. The right plot shows the testing and training

errors with increasing tree depth.

Parametric vs. Non-parametric algorithms

So far we have introduced a variety of algorithms. One can categorize these into
different families, such as generative vs. discriminative, or probabilistic vs. non-
probabilistic. Here we will introduce another one, parametric vs. non-
parametric.

A parametric algorithm is one that has a constant set of parameters, which is
independent of the number of training samples. You can think of it as the amount
of much space you need to store the trained classifier. An examples for a
parametric algorithm is the Perceptron algorithm, or logistic regression. Their
parameters consist of , which define the separating hyperplane. The
dimension of depends of the dimension of the training data, but not on how
many training samples you use for training.

In contrast, the number of parameters of a non-parametric algorithm scales as a
function of the training samples. An example of a non-parametric algorithm is
the -Nearest Neighbors classifier. Here, during "training" we store the entire
training data -- so the parameters that we learn are identical to the training set
and the number of parameters (/the storage we require) grows linearly with the
training set size.

An interesting edge case is kernel-SVM. Here it depends very much which kernel
we are using. E.g. linear SVMs are parametric (for the same reason as the
Perceptron or logistic regression). So if the kernel is linear the algorithm is clearly
parametric. However, if we use an RBF kernel then we cannot represent the
classifier of a hyper-plane of finite dimensions. Instead we have to store the
support vectors and their corresponding dual variables -- the number of which
is a function of the data set size (and complexity). Hence, the kernel-SVM with an
RBF kernel is non-parametric. A strange in-between case is the polynomial
kernel. It represents a hyper-plane in an extremely high but still finite-
dimensional space. So technically one could represent any solution of an SVM
with a polynomial kernel as a hyperplane in an extremely high dimensional space
with a fixed number of parameters, and the algorithm is therefore (technically)
parametric. However, in practice this is not practical. Instead, it is almost always
more economical to store the support vectors and their corresponding dual
variables (just like with the RBF kernel). It therefore is technically parametric but
for all means and purposes behaves like a non-parametric algorithm.

Decision Trees are also an interesting case. If they are trained to full depth they
are non-parametric, as the depth of a decision tree scales as a function of the
training data (in practice). If we however limit the tree depth by a
maximum value they become parametric (as an upper bound of the model size is
now known prior to observing the training data).

w, b

w

k

αi

O(log2(n))

