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Recap

Remember the unconstrained SVM Formulation

The hinge loss is the SVM's error function of choice, whereas the -regularizer
penalizes (overly) complex solutions. This is an example of empirical risk
minimization with a loss function  and a regularizer ,

where the loss function is a continuous function which penalizes training error,
and the regularizer is a continuous function which penalizes classifier complexity.
Here, we define  as  from the previous lecture.[1]

Commonly Used Binary Classification Loss Functions

Different Machine Learning algorithms use different loss functions; Table 4.1
shows just a few (here we assume  ):

Loss Usage Comments

Hinge-Loss Standard
SVM( )

(Differentiable)
Squared

When used for Standard SVM,
the loss function denotes the
size of the margin between
linear separator and its closest
points in either class. Only
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Hingeless SVM (
)

differentiable everywhere with
.

Log-Loss Logistic
Regression

One of the most popular loss
functions in Machine
Learning, since its outputs are
well-calibrated probabilities.

Exponential Loss
AdaBoost

This function is very
aggressive. The loss of a mis-
prediction increases
exponentially with the value of

. This can lead to
nice convergence results, for
example in the case of
Adaboost, but it can also cause
problems with noisy data.

Zero-One Loss
Actual
Classification
Loss

Non-continuous and thus
impractical to optimize.

Table 4.1: Loss Functions With Classification 

Quiz: What do all these loss functions look like with respect to ? Some
questions about the loss functions:

1. Which functions are strict upper bounds on the 0/1-loss?
2. What can you say about the hinge-loss and the log-loss as ?

Some additional notes on loss functions:
3. 1. As , the log-loss and the hinge loss become increasingly parallel.
4. 2. The exponential loss and the hinge loss are both upper bounds of the zero-

one loss. (For the exponential loss, this is an important aspect in Adaboost,
which we will cover later.)

5. 3. Zero-one loss is zero when the prediction is correct, and one when
incorrect.



-5 -4 -3 -2 -1 0 1 2 3 4

1

2

3

4

5

6



Commonly Used Regression Loss Functions

Regression algorithms (where a prediction can lie anywhere on the real-
number line) also have their own host of loss functions:

Loss Comments

Squared Loss

Most popular regression loss function
Estimates Mean Label
Also known as Ordinary Least Squares
(OLS)

 Differentiable everywhere
 Somewhat sensitive to

outliers/noise

Absolute Loss
Also a very popular loss function
Estimates Median Label

 Less sensitive to noise
 Not differentiable at 

Huber Loss

 if
,

otherwise

Also known as Smooth Absolute Loss
"Best of Both Worlds" of Squared and
Absolute Loss
Once-differentiable
Takes on behavior of Squared-Loss
when loss is small, and Absolute Loss
when loss is large.

Log-Cosh Loss
,

 Similar to Huber Loss, but twice
differentiable everywhere

 More expensive to compute

Table 4.2: Loss Functions With Regression, i.e. 

Quiz: What do the loss functions in Table 4.2 look like with respect to
?
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Regularizers

When we investigate regularizers it helps to change the formulation of the
optimization problem from an unconstrained to a constraint formulation, to
obtain a better geometric intuition:

For each , there exists  such that the two formulations above are
equivalent, and vice versa. In previous sections, we have already seen the -
regularizer in the context of SVMs, Ridge Regression, or Logistic Regression.
Besides the -regularizer, other types of useful regularizers and their
properties are listed in Table 4.3.

Regularizer Properties

-Regularization

 Strictly Convex
 Differentiable
 Uses weights on all features, i.e. relies

on all features to some degree (ideally we
would like to avoid this) - these are
known as Dense Solutions.

-Regularization

Convex (but not strictly)
 Not differentiable at  (the point

which minimization is intended to bring
us to
Effect: Sparse (i.e. not Dense) Solutions

-Norm  Non-convex
 Very sparse solutions (if  )
 Not differentiable, Initialization

dependent

Table 4.3: Most popular Regularizers

Famous Special Cases

This section includes several special cases that deal with risk minimization,
such as Ordinary Least Squares, Ridge Regression, Lasso, and Logistic



Regression. Table 4.4 provides information on their loss functions,
regularizers, as well as solutions.

Loss and Regularizer Comments

Ordinary Least Squares

Squared Loss
No Regularization
Closed form solution:

Ridge Regression Squared Loss
-Regularization

Lasso

 sparsity inducing (good
for feature selection)

 Convex
 Not strictly convex (no

unique solution)
 Not differentiable (at

0)
Solve with (sub)-gradient
descent or SVEN

Elastic Net  Strictly convex (i.e.
unique solution)

 sparsity inducing (good
for feature selection)

 Dual of squared-loss
SVM, see SVEN

 Non-differentiable

Logistic Regression Often  or  Regularized
Solve with gradient
descent.

http://www.cs.cornell.edu/~kilian/papers/aaai15_sven.pdf
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Linear Support Vector Machine

Typically  regularized
(sometimes ).
Quadratic program.
When kernelized leads to
sparse solutions.
Kernelized version can be
solved very efficiently with
specialized algorithms
(e.g. SMO)

Table 4.4: Special Cases

Some additional notes on the Special Cases:

1. Ridge Regression is very fast and can be solved in closed form if the data
isn't too high dimensional (in just 1 line of code.)

2. There is an interesting connection between Ordinary Least Squares and
the first principal component of PCA (Principal Component Analysis).
PCA also minimizes square loss, but looks at perpendicular loss (the
horizontal distance between each point and the regression line) instead.

[1] In Bayesian Machine Learning, it is common to optimize , but for the
purposes of this class, it is assumed to be fixed.
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