
Lecture 9: SVM
Cornell CS 4/5780

The Support Vector Machine (SVM) is a linear classifier that can be viewed as an
extension of the Perceptron developed by Rosenblatt in 1958. The Perceptron
guaranteed that you find a hyperplane if it exists. The SVM finds the maximum
margin separating hyperplane.

Setting: We define a linear classifier:  and we assume a
binary classification setting with labels .

Figure 1: (Left:) Two different separating hyperplanes for the same data
set. (Right:) The maximum margin hyperplane. The margin, , is the

distance from the hyperplane (solid line) to the closest points in either
class (which touch the parallel dotted lines).

Typically, if a data set is linearly separable, there are infinitely many separating
hyperplanes. A natural question to ask is: Question: What is the best
separating hyperplane? SVM Answer: The one that maximizes the
distance to the closest data points from both classes. We say it is the
hyperplane with maximum margin.
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Margin

We already saw the definition of a margin in the context of the Perceptron. A
hyperplane is defined through  as a set of points such that

. Let the margin  be defined as the distance from the
hyperplane to the closest point across both classes.

What is the distance of a point  to the
hyperplane ?
Consider some point . Let  be the vector from  to

 of minimum length. Let  be the projection of 
onto . It follows then that:

 is parallel to , there exists some  such that

 lies on the hyperplane (i.e.  ) which implies

We can now take (3) and substitute in (1) and (2).

which implies

This allows us to compute the length of  by plugging in (4) into (2):

Margin of  with respect to :

Useful observation: By definition, the margin and hyperplane are scale invariant.
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Note that if the hyperplane is such that  is maximized, it must lie right in the
middle of the two classes. In other words,  must be the distance to the closest
point within both classes. (If not, you could move the hyperplane towards data
points of the class that is further away and increase , which contradicts that  is
maximized.)

Max Margin Classifier

We can formulate our search for the maximum margin separating hyperplane as
a constrained optimization problem. The objective is to maximize the margin
under the constraints that all data points must lie on the correct side of the
hyperplane:

If we plug in the definition of  we obtain:

Because the hyperplane is scale invariant, we can fix the scale of  anyway we
want. Let's be clever about it, and choose it such that

We can add this re-scaling as an equality constraint. Then our objective becomes:

(Where we made use of the fact  is a monotonically increasing function
for  and ; i.e. the  that maximizes  also
maximizes .)

The new optimization problem becomes:
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These constraints are still hard to deal with, however luckily we can show that
(for the optimal solution) they are equivalent to a much simpler formulation.
(Makes sure you know how to prove that the two sets of constraints are
equivalent.)

This new formulation is a quadratic optimization problem. The objective is
quadratic and the constraints are all linear. We can be solve it efficiently with
any QCQP (Quadratically Constrained Quadratic Program) solver. It has a unique
solution whenever a separating hyper plane exists. It also has a nice
interpretation: Find the simplest hyperplane (where simpler means smaller 
) such that all inputs lie at least 1 unit away from the hyperplane on the correct
side.

Support Vectors

For the optimal  pair, some training points will have tight constraints, i.e.

(This must be the case, because if for all training points we had a strict 
inequality, it would be possible to scale down both parameters  until the
constraints are tight and obtained an even lower objective value.) We refer to
these training points as support vectors. Support vectors are special because
they are the training points that define the maximum margin of the hyperplane to
the data set and they therefore determine the shape of the hyperplane. If you
were to move one of them and retrain the SVM, the resulting hyperplane would
change. The opposite is the case for non-support vectors (provided you don't
move them too much, or they would turn into support vectors themselves). This
will become particularly important in the dual formulation for Kernel-SVMs.
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SVM with soft constraints

If the data is low dimensional it is often the case that there is no separating
hyperplane between the two classes. In this case, there is no solution to the
optimization problems stated above. We can fix this by allowing the constraints
to be violated ever so slight with the introduction of slack variables:

The slack variable  allows the input  to be closer to the hyperplane (or even be
on the wrong side), but there is a penalty in the objective function for such
"slack". If C is very large, the SVM becomes very strict and tries to get all points to
be on the right side of the hyperplane. If C is very small, the SVM becomes very
loose and may "sacrifice" some points to obtain a simpler (i.e. lower )
solution.

Unconstrained Formulation:

Let us consider the value of  for the case of . Because the objective will
always try to minimize  as much as possible, the equation must hold as an
equality and we have:

This is equivalent to the following closed form:

If we plug this closed form into the objective of our SVM optimization problem,
we obtain the following unconstrained version as loss function and regularizer:

This formulation allows us to optimize the SVM paramters ( ) just like logistic
regression (e.g. through gradient descent). The only difference is that we have the
hinge-loss instead of the logistic loss.
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Figure 2: The five plots above show different boundary of hyperplane and
the optimal hyperplane separating example data, when C=0.01, 0.1, 1, 10,

100.


