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Gradient Descent (and Beyond)
Cornell CS 4/5780

Fall 2021

We want to minimize a convex, continuous and differentiable loss function .
In this section we discuss two of the most popular "hill-climbing" algorithms,
gradient descent and Newton's method.

Algorithm:
Initialize 
Repeat until converge:

 =  + 
If  -  < , converged!

Trick: Taylor Expansion

How can you minimize a function  if you don't know much about it? The trick is
to assume it is much simpler than it really is. This can be done with Taylor's
approximation. Provided that the norm is small (i.e.  +  is very close to 
), we can approximate the function  by its first and second derivatives:

   +   

   +    + 

Here,  is the gradient and  is the Hessian of .
Both approximations are valid if  is small, but the second one assumes that 
is twice differentiable and is more expensive to compute but also more accurate
than only using gradient.
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Gradient Descent: Use the first order approximation

In gradient descent we only use the gradient (first order). In other words, we
assume that the function  around  is linear and behaves like .
Our goal is to find a vector  that minimizes this function. In steepest descent we
simply set

 = -  ,

for some small >0. It is straight-forward to prove that in this case
.

Setting the learning rate >0 is a dark art. Only if it is sufficiently small will
gradient descent converge (see the first figure below). If it is too large the
algorithm can easily diverge out of control (see the second figure below). A safe
(but sometimes slow) choice is to set = , which guarantees that it will
eventually become small enough to converge (for any initial value >0).

Adagrad

One option is to set the step-size adaptively for every feature. Adagrad keeps a
running average of the squared gradient magnitude and sets a small learning rate
for features that have large gradients, and a large learning rate for features with
small gradients. Setting different learning rates for different features is
particularly important if they are of different scale or vary in frequency. For
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example, word counts can differ a lot across common words and rare words.
Adagrad Algorithm:
Initialize  and : :  and 
Repeat until converge:

 # Compute gradient
: 
: 

If  -  < , converged! # for some small .

Newton's Method: Use 2nd order Approximation

Newton's method assumes that the loss  is twice differentiable and uses the
approximation with Hessian (2nd order Taylor approximation). The Hessian
Matrix contains all second order partial derivatives and is defined as

and, because the convexity of , it is always a symmetric square matrix and
positive semi-definite.

Note: A symmetric matrix  is positive semi-definite if it has only non-negative
eigenvalues or, equivalently, for any vector  we must have .

It follows that the approximation

   +    + 

describes a convex parabola, and we can find its minimum by solving the
following optimization problem:

  +    + 

w0 z ∀d w0
d

= 0 zd = 0

g = ∂f(w)
∂w

∀d zd ← zd + g2
d

∀d wt+1
d

← wt
d

− α gd
√zd+ϵ

∥wt+1 wt∥2 δ δ > 0

ℓ

ℓ

M

x x⊤Mx ≥ 0

ℓ(w + s) ≈ ℓ(w) g(w) ⊤ s 1
2 $$s⊤H(w)s

argmin
s

ℓ(w) g(w) ⊤ s 1
2 $$s⊤H(w)s



2/22/23, 4:24 PM Lecture 7: Gradient Descent (and Beyond)

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote07.html 4/5

To find the minimum of the objective, we take its first derivative with respect to ,
equate it with zero, and solve for :

This choice of  converges extremely fast if the approximation is sufficiently
accurate and the resulting step sufficiently small. Otherwise it can diverge.
Divergence often happens if the function is flat or almost flat with respect to
some dimension. In that case the second derivatives are close to zero, and their
inverse becomes very large - resulting in gigantic steps. Different from gradient
descent, here there is no step-size that guarantees that steps are all small and
local. As the Taylor approximation is only accurate locally, large steps can move
the current estimates far from regions where the Taylor approximation is
accurate.

Best practices

1. The matrix  scales  and is expensive to compute. A good
approximation can be to only compute its diagonal entries and multiply the
update with a small step-size. Essentially you are then doing a hybrid
between Newton's method and gradient descent, where you weigh the step-
size for each dimension by the inverse Hessian.

2. To avoid divergence of Newton's method, a good approach is to start with
gradient descent (or even stochastic gradient descent) and then finish the
optimization Newton's method. Typically, the second order approximation,
used by Newton's Method, is more likely to be appropriate near the optimum.

A gradient descent step (left) and a Newton step (right) on the same function.
The loss function is depicted in black, the approximation as a dotted red line.

The gradient step moves the point downwards along the linear approximation
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of the function. The Newton step moves the point to the minimum of the
parabola, which is used to approximate the function.

(a) A starting point where Newton's Method converges in 8 iterations.

(b) A starting point where Newton's Method diverges.

(c) same starting point as in Figure 2, however Newton's method is only used
after 6 gradient steps and converges in a few steps.

The three plots show a comparison of Newton's Method and Gradient Descent.
Gradient Descent always converges after over 100 iterations from all initial
starting points. If it converges (Figure 1), Newton's Method is much faster
(convergence after 8 iterations) but it can diverge (Figure 2). Figure 3 shows the
hybrid approach of taking 6 gradient descent steps and then switching to
Newton's Method. It still converges in only 10 updates.


