


Naive Bayes is a linear classifier

1. Suppose that  and features are multinomial. We can show that

As before, we define . Let us define two weight vectors
 and bias terms  as  and .

This notation allows us to define the following relation:

It follows that  and  . Also, by
definition  and . Let us define the
differences between the two weight vectors and biases as:  and

. We can use Bayes Rule to derive:

Finally, because our labels  we can conveniently create one
equation for both classes:
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Logistic Regression

In this lecture we will learn about the discriminative counterpart to the Gaussian
Naive Bayes (Naive Bayes for continuous features).

Machine learning algorithms can be (roughly) categorized into two categories:

Generative algorithms, that estimate  (often they model  and
 separately).

Discriminative algorithms, that model 

The Naive Bayes algorithm is generative. It models  and makes explicit
assumptions on its distribution (e.g. multinomial, categorical, Gaussian, ...). The
parameters of this distributions are estimated with MLE or MAP. We showed
previously that for the Gaussian Naive Bayes  for

 for specific vectors  and  that are uniquely determined through
the particular choice of .

Logistic Regression is often referred to as the discriminative counterpart of Naive
Bayes. Here, we model  and assume that it takes on exactly this form

We make little assumptions on , e.g. it could be Gaussian or Multinomial.
Ultimately it doesn't matter, because we estimate the vector  and  directly with
MLE or MAP to maximize the conditional likelihood of . For a lot
more details, I strongly suggest that you read this excellent book chapter by Tom
Mitchell.

Throughout this lecture we absorbed the parameter  into  through an
additional constant dimension (similar to the Perceptron).

Maximum likelihood estimate (MLE)

In MLE we choose parameters that maximize the conditional likelihood.
The conditional data likelihood  is the probability of the observed
values  in the training data conditioned on the feature values . Note that
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. We choose the paramters that maximize this
function and we assume that the 's are independent given the input features 
and . So,

We need to estimate the parameters . To find the values of the parameters at
minimum, we can try to find solutions for . This
equation has no closed form solution, so we will use Gradient Descent on the
negative log likelihood .

Maximum a Posteriori (MAP) Estimate

In the MAP estimate we treat  as a random variable and can specify a prior
belief distribution over it. We may use: . This is the Gaussian
approximation for LR.

Our goal in MAP is to find the most likely model parameters given the data, i.e.,
the parameters that maximaize the posterior.

We can solve for  just as before with MLE.
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where . Once again, this function has no closed form solution, but we can
use Gradient Descent on the negative log posterior

 to find the optimal parameters .

For a better understanding for the connection of Naive Bayes and Logistic
Regression, you may take a peek at these excellent notes.

Summary

Logistic Regression is the discriminative counterpart to Naive Bayes. In Naive
Bayes, we first model  for each label , and then obtain the decision
boundary that best discriminates between these two distributions. In Logistic
Regression we do not attempt to model the data distribution , instead, we
model  directly. We assume the same probabilistic form

 , but we do not restrict ourselves in any way by making

assumptions about  (in fact it can be any member of the Exponential
Family). This allows logistic regression to be more flexible, but such flexibility
also requires more data to avoid overfitting. Typically, in scenarios with little data
and if the modeling assumption is appropriate, Naive Bayes tends to outperform
Logistic Regression. However, as data sets become large logistic regression often
outperforms Naive Bayes, which suffers from the fact that the assumptions made
on  are probably not exactly correct. If the assumptions hold exactly, i.e.
the data is truly drawn from the distribution that we assumed in Naive Bayes,
then Logistic Regression and Naive Bayes converge to the exact same result in the
limit (but NB will be faster).
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