
previous next

Bayes Classifier and Naive Bayes
Cornell CS 4/5780

Spring 2024

(Lecture 9) (Lecture 10)

Our training consists of the set drawn from some
unknown distribution . Because all pairs are sampled i.i.d., we obtain

If we do have enough data, we could estimate similar to the coin
example in the previous lecture, where we imagine a gigantic die that has one
side for each possible value of . We can estimate the probability that one
specific side comes up through counting:

where if and and 0 otherwise.

Of course, if we are primarily interested in predicting the label from the
features , we may estimate directly instead of . We can then
use the Bayes Optimal Classifier for a specific to make predictions.

So how can we estimate ? Previously we have derived that

. Similarly, and

. We can put these two together

D = {(x1, y1), … , (xn, yn)}

P(X,Y)

P(D) = P((x1, y1), … , (xn, yn)) = Πn
α=1P(xα, yα).

P(X,Y)

(x, y)

P̂(x, y) =
∑n

i=1 I(xi = x ∧ yi = y)

n
,

I(xi = x ∧ yi = y) = 1 xi = x yi = y

y

x P(Y |X) P(X,Y)

P̂(y|x)

P̂(y|x)

P̂(y) =
∑n

i=1 I(yi=y)
n

P̂(x) =
∑n

i=1 I(xi=x)
n

P̂(y, x) =
∑n

i=1 I(xi=x∧yi=y)
n

P̂(y|x) =
P̂(y, x)

P(x)
=

∑n
i=1 I(xi = x ∧ yi = y)

∑n
i=1 I(xi = x)

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2024Spring/WebSite/lectures/lecturenote04.html
file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2024Spring/WebSite/lectures/lecturenote06.html
https://www.youtube.com/watch?v=VDK0nkjFh5U&feature=youtu.be&t=19m57s
file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2024Spring/WebSite/lectures/lecturenot04.html

The Venn diagram illustrates that the MLE method estimates as

Problem: But there is a big problem with this method. The MLE estimate is only
good if there are many training vectors with the same identical features as .
In high dimensional spaces (or with continuous), this never happens! So

 and .

Naive Bayes

We can approach this dilemma with a simple trick, and an additional
assumption. The trick part is to estimate and instead, since, by
Bayes rule,

Recall from Estimating Probabilities from Data that estimating and
is called generative learning.
Estimating is easy. For example, if takes on discrete binary values
estimating reduces to coin tossing. We simply need to count how many
times we observe each outcome (in this case each class):

Estimating , however, is not easy! The additional assumption that we
make is the Naive Bayes assumption.

P̂(y|x)

P̂(y|x) =
|C|

|B|

x

x

|B| → 0 |C| → 0

P(y) P(x|y)

P(y|x) =
P(x|y)P(y)

P(x)
.

P(y) P(x|y)

P(y) Y

P(y)

P(y = c) =
∑n

i=1 I(yi = c)

n
= π̂c

P(x|y)

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2024Spring/WebSite/lectures/lecturenote04.html

Naive Bayes Assumption:

i.e., feature values are independent given the label! This is a very bold
assumption.

For example, a setting where the Naive Bayes classifier is often used is spam
filtering. Here, the data is emails and the label is spam or not-spam. The Naive
Bayes assumption implies that the words in an email are conditionally
independent, given that you know that an email is spam or not. Clearly this is not
true. Neither the words of spam or not-spam emails are drawn independently at
random. However, the resulting classifiers can work well in practice even if this
assumption is violated.

Illustration behind the Naive Bayes algorithm. We estimate
independently in each dimension (middle two images) and then obtain an

estimate of the full data distribution by assuming conditional independence
 (very right image).

So, for now, let's pretend the Naive Bayes assumption holds. Then the Bayes
Classifier can be defined as

Estimating is easy as we only need to consider one dimension. And
estimating is not affected by the assumption.

P(x|y) =
d

∏
α=1

P(xα|y), where xα = xα is the value for feature α

P(xα|y)

P(x|y) = ∏α P(xα|y)

h(x) = argmax
y

P(y|x)

= argmax
y

P(x|y)P(y)

P(x)

= argmax
y

P(x|y)P(y) (P(x) does not depend on y)

= argmax
y

d

∏
α=1

P(xα|y)P(y) (by the naive Bayes assumption)

= argmax
y

d

∑
α=1

log(P(xα|y)) + log(P(y)) (as log is a monotonic function)

log(P(xα|y))

P(y)

Illustration of categorical NB. For dimensional data, there exist
independent dice for each class. Each feature has one die per class. We

assume training samples were generated by rolling one die after another. The
value in dimension corresponds to the outcome that was rolled with the

die.

Estimating

Now that we know how we can use our assumption to make the estimation of
 tractable. There are 3 notable cases in which we can use our naive Bayes

classifier.

Case #1: Categorical features

Features:

Each feature falls into one of categories. (Note that the case with binary
features is just a specific case of this, where .) An example of such a
setting may be medical data where one feature could be marital status (single /
married). Model :

where is the probability of feature having the value , given that the label
is . And the constraint indicates that must have one of the categories

. Parameter estimation:

P(xα|y)

P(y|x)

d d

i ith

xα ∈ {f1, f2, ⋯ , fKα}

α Kα

Kα = 2

P(xα ∣ y)

P(xα = j|y = c) = [θjc]α and
Kα

∑
j=1

[θjc]α = 1

[θjc]α α j

c xα

{1, … ,Kα}

[θ̂jc]α =
∑n

i=1 I(yi = c)I(xiα = j) + l

∑n
i=1 I(yi = c) + lKα

,

Illustration of multinomial NB. There are only as many dice as classes. Each
die has sides. The value of the feature shows how many times this

particular side was rolled.

where and is a smoothing parameter. By setting we get an
MLE estimator, and leads to MAP. If we set we get Laplace
smoothing.

In words (without the hallucinated samples) this means

ssentially the categorical feature model associates a special coin with each feature
and label. The generative model that we are assuming is that the data was
generated by first choosing the label (e.g. "healthy person"). That label comes
with a set of "dice", for each dimension one. The generator picks each die,
tosses it and fills in the feature value with the outcome of the coin toss. So if there
are possible labels and dimensions we are estimating "dice" from the
data. However, per data point only dice are tossed (one for each dimension).
Die (for any label) has possible "sides". Of course this is not how the data is
generated in reality - but it is a modeling assumption that we make. We then
learn these models from the data and during test time see which model is more
likely given the sample.

Prediction:

Case #2: Multinomial features

xiα = [xi]α l l = 0

l > 0 l = +1

l

of samples with label c that have feature α with value j

of samples with label c
.

d

C d d × C

d

α Kα

argmax
y

P(y = c ∣ x) ∝ argmax
y

π̂c

d

∏
α=1

[θ̂jc]α

d ith

If feature values don't represent categories (e.g. single/married) but counts we
need to use a different model. E.g. in the text document categorization, feature
value means that in this particular document the word in my
dictionary appears times. Let us consider the example of spam filtering.
Imagine the word is indicative of being "spam". Then if means that
this email is likely spam (as word appears 10 times in it). And another email
with should be even more likely to be spam (as the spammy word
appears twice as often). With categorical features this is not guaranteed. It could
be that the training set does not contain any email that contain word exactly 20
times. In this case you would simply get the hallucinated smoothing values for
both spam and not-spam - and the signal is lost. We need a model that
incorporates our knowledge that features are counts - this will help us during
estimation (you don't have to see a training email with exactly the same number
of word occurrences) and during inference/testing (as you will obtain these
monotonicities that one might expect). The multinomial distribution does exactly
that.

Features:

Each feature represents a count and m is the length of the sequence. An
example of this could be the count of a specific word in a document of length
and is the size of the vocabulary. Model : Use the multinomial
distribution

where is the probability of selecting and . So, we can use this
to generate a spam email, i.e., a document of class by picking
words independently at random from the vocabulary of words using

. Parameter estimation:

where denotes the number of words in document . The
numerator sums up all counts for feature and the denominator sums up all
counts of all features across all data points. E.g.,

xα = j x αth

j

αth xα = 10

α

x′
α = 20

α

xα ∈ {0, 1, 2, … ,m} and m =
d

∑
α=1

xα

α

α m

d P(x ∣ y)

P(x ∣ m, y = c) =
m!

x1! ⋅ x2! ⋅ ⋯ ⋅ xd!

d

∏
α=1

(θαc)
xα

θαc xα ∑d
α=1 θαc = 1

x y = spam m

d

P(x ∣ y = spam)

θ̂αc =
∑n

i=1 I(yi = c)xiα + l

∑n
i=1 I(yi = c)mi + l ⋅ d

mi = ∑d
β=1 xiβ i

xα

Illustration of Gaussian NB. Each class conditional feature distribution
 is assumed to originate from an independent Gaussian distribution

with its own mean and variance .

Again, is the smoothing parameter. Prediction:

Case #3: Continuous features (Gaussian Naive Bayes)

Features:

Model : Use Gaussian distribution

Note that the model specified above is based on our assumption about the data -
that each feature comes from a class-conditional Gaussian distribution. The full
distribution , where is a diagonal covariance matrix with

.

Parameter estimation: As always, we estimate the parameters of the distributions
for each dimension and class independently. Gaussian distributions only have
two parameters, the mean and variance. The mean is estimated by the
average feature value of dimension from all samples with label . The (squared)
standard deviation is simply the variance of this estimate.

of times word α appears in all spam emails

of words in all spam emails combined
.

l

argmax
c

P(y = c ∣ x) ∝ argmax
c

π̂c

d

∏
α=1

θ̂xα
αc

P(xα|y)

μα,y σ2
α,y

xα ∈ R (each feature takes on a real value)

P(xα ∣ y)

P(xα ∣ y = c) = N (μαc,σ
2
αc) =

1

√2πσαc

e
− 1

2 (
xα−μαc

σαc
)

2

α

P(x|y) ∼ N (μy, Σy) Σy

[Σy]α,α = σ2
α,y

μα,y

α y

μαc ←
1

nc

n

∑
i=1

I(yi = c)xiα where nc =
n

∑
i=1

I(yi = c)

σ2
αc ←

1

nc

n

∑
i=1

I(yi = c)(xiα − μαc)
2

Naive Bayes is a linear classifier

Naive Bayes leads to a linear decision boundary in many common cases.
Illustrated here is the case where is Gaussian and where is

identical for all (but can differ across dimensions). The boundary of the
ellipsoids indicate regions of equal probabilities . The red decision line

indicates the decision boundary where .

1. Suppose that and features are multinomial We can show that

As before, we define and . Let us define
two weight vectors and bias terms as

First let us consider and remember that
:

It follows that and . Also, by
definition and . Let us define the
differences between the two weight vectors and biases as: and

. We can use Bayes Rule to derive:

P(xα|y) σα,c

c α

P(x|y)

P(y = 1|x) = P(y = 2|x)

yi ∈ {−1, +1}

P(y ∣ x) =
1

1 + e−y(w
⊤

x+b)
.

P(xα|Y = +1) ∝ θxα

α+ P(Y = +1) = π+

w+, w− b+, b−

w+
α = log[θα+]

b+ = log[P(Y = +1)].

log [P(x|Y = +1)]

P(xα | Y = +1) = θ
xα

α+

log [P(x|Y = +1)] = log [Πd
α=1P(xα | Y = +1)]

=
d

∑
α=1

xα log[θα+]

=
d

∑
α=1

xαw
+
α

= x
⊤

w+.

P(x|Y = +1) = ex
⊤

w+ P(x|Y = −1) = ex
⊤

w−

P(Y = +1) = eb
+

P(Y = −1) = eb
−

w = w− − w+

b = b− − b+

Finally, because our labels we can conveniently create one
equation for both classes:

2. The exact same equation can be drived for Gaussian Naive Bayes with constant
variance (i.e. for all), except that the vector is here the
difference of the means.

P(Y = +1 | x) =
P(x | + 1)P(Y = +1)

P(x | + 1)P(Y = +1) + P(x | − 1)P(Y = −1)

=
ex

⊤
w++b+

ex⊤w++b+ + ex⊤w−+b−

=
1

1 + e−(x⊤w+b)

y ∈ {+1, −1}

P(Y = y | x) =
1

1 + e−y(x
⊤

w+b)
.

σα1 = σα−1 α w

