
2/14/23, 9:30 AM Lecture 4: Estimating Probabilities from data

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/lecturenote04.html 1/6

Estimating Probabilities from data
Cornell CS 4/5780

Spring 2023

Remember the Bayes Optimal classifier: If we are provided with  we can
predict the most likely label for , formally . It is therefore worth
considering if we can estimate  directly from the training data. If this is
possible (to a good approximation) we could then use the Bayes Optimal classifier
in practice on our estimate of .

In fact, many supervised learning can be viewed as estimating .
Generally, they fall into two categories:

When we estimate , then we call it generative
learning.
When we only estimate  directly, then we call it discriminative
learning.

So how can we estimated probability distributions from samples?

Simple scenario: coin toss

Suppose you find a coin and it's ancient and very valuable. Naturally, you ask
yourself, "What is the probability that this coin comes up heads when I toss it?"
You toss it  times and obtain the following sequence of outcomes:

. Based on these samples, how would you
estimate ? We observed  heads and  tails. So, intuitively,

Can we derive this more formally?

Maximum Likelihood Estimation (MLE)

The estimator we just mentioned is the Maximum Likelihood Estimate (MLE).
For MLE you typically proceed in two steps: First, you make an explicit modeling
assumption about what type of distribution your data was sampled from. Second,
you set the parameters of this distribution so that the data you observed is as
likely as possible.
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Let us return to the coin example. A natural assumption about a coin toss is that
the distribution of the observed outcomes is a binomial distribution. The
binomial distribution has two parameters  and  and it captures the distribution
of  independent Bernoulli (i.e. binary) random events that have a positive
outcome with probability . In our case  is the number of coin tosses, and 
could be the probability of the coin coming up heads (e.g. ). Formally,
the binomial distribution is defined as

and it computes the probability that we would observe exactly  heads,  tails,
if a coin was tossed  times and its probability of coming up heads is

.

MLE Principle: Find  to maximize the likelihood of the data, :

Often we can solve this maximization problem with a simple two step procedure:
1. plug in all the terms for the distribution, and take the  of the function. 2.
Compute its derivative, and equate it with zero. Taking the log of the likelihood
(often referred to as the log-likelihood) does not change its maximum (as the log
is a monotonic function, and the likelihood positive), but it turns all products into
sums which are much easier to deal with when you differentiate. Equating the
derivative with zero is a standard way to find an extreme point. (To be precise you
should verify that it really is a maximum and not a minimum, by verifying that
the second derivative is negative.)

Returning to our binomial distribution, we can now plug in the definition and
compute the log-likelihood:

We can then solve for  by taking the derivative and equating it with zero. This
results in

A nice sanity check is that .

MLE gives the explanation of the data you observed.
If  is large and your model/distribution is correct (that is  includes the
true model), then MLE finds the true parameters.
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But the MLE can overfit the data if  is small. It works well when  is large.
If you do not have the correct model (and  is small) then MLE can be
terribly wrong!

For example, suppose you observe H,H,H,H,H. What is ?

Simple scenario: coin toss with prior knowledge

Assume you have a hunch that  is close to . But your sample size is small, so
you don't trust your estimate. Simple fix: Add  imaginery throws that would
result in  (e.g. ). Add  Heads and  Tails to your data.

For large , this is an insignificant change. For small , it incorporates your
"prior belief" about what  should be. Can we derive this formally?

The Bayesian Way

Model  as a random variable, drawn from a distribution . Note that  is
not a random variable associated with an event in a sample space. In frequentist
statistics, this is forbidden. In Bayesian statistics, this is allowed and you can
specify a prior belief  defining what values you believe  is likely to take on.

Now, we can look at  (recall Bayes Rule!), where

 is the prior distribution over the parameter(s) , before we see any
data.

 is the likelihood of the data given the parameter(s) .
 is the posterior distribution over the parameter(s)  after we have

observed the data.

A natural choice for the prior ) is the Beta distribution:

where  is the normalization constant (if this looks scary don't

worry about it, it is just there to make sure everything sums to  and to scare
children at Halloween). Note that here we only need a distribution over a singly
binary random variable . (The multivariate generalization of the Beta
distribution is the Dirichlet distribution.)

Why is the Beta distribution a good fit?

it models probabilities (  lives on )
it is of the same distributional family as the binomial distribution
(conjugate prior)  the math will turn out nicely:
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So far, we have a distribution over . How can we get an estimate for ?

Maximum a Posteriori Probability Estimation (MAP)

For example, we can choose  to be the most likely  given the data. MAP
Principle: Find  that maximizes the posterior distribution :

For out coin flipping scenario, we get:

A few comments:

The MAP estimate is identical to MLE with  hallucinated heads and
 hallucinated tails

As ,  as  and  become irrelevant compared
to very large .
MAP is a great estimator if an accurate prior belief is available (and
mathematically tractable).
If  is small, MAP can be very wrong if prior belief is wrong!
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"True" Bayesian approach

Note that MAP is only one way to get an estimator. There is much more
information in , and it seems like a shame to simply compute the mode
and throw away all other information. A true Bayesian approach is to use the
posterior predictive distribution directly to make prediction about the label  of
a test sample with features :

Unfortunately, the above is generally intractable in closed form and sampling
techniques, such as Monte Carlo approximations, are used to approximate the
distribution. A pleasant exception are Gaussian Processes, which we will cover
later in this course.

Another exception is actually our coin toss example. To make predictions using 
in our coin tossing example, we can use

Here, we used the fact that we defined  (this
is only the case because we assumed that our data is drawn from a binomial
distribution - in general this would not hold).

Machine Learning and estimation

In supervised Machine learning you are provided with training data . You use
this data to train a model, represented by its parameters . With this model you
want to make predictions on a test point .

MLE Prediction:  Learning: . Here  is purely
a model parameter.
MAP Prediction:  Learning: 
. Here  is a random variable.
"True Bayesian" Prediction: . Here  is
integrated out - our prediction takes all possible models into account.

As always the differences are subtle. In MLE we maximize  in MAP
we maximize . So essentially in MAP we only add the
term  to our optimization. This term is independent of the data and
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penalizes if the parameters,  deviate too much from what we believe is
reasonable. We will later revisit this as a form of regularization, where 
will be interpreted as a measure of classifier complexity.

θ

log [P(θ)]
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