










































P yyIx wÉx
WMLE

argmax IT Pw Y Yi X X

a.se i igffiie
Logistic loss lossWtxy log It expl y W xe.si

arg ifaliw

1 11 8

If

i

Wt We

3.  Assume the objective is differentiable (twice differentiable) 

CS 5/4780

Gradient Descent and Beyond

Unfortunately above problems don’t have closed form solution
1.
2.   Majority of ML algorithms solve problem of form  

Logistic regression recap: directly model

which direction to choose?

General Scheme: Input initial guess w0, t = 0

While not converged:

	 1. Pick direction st∈     ,   t= t+1

	 2. wt+1 = wt + st

	 3. If   wt - wt+1 <     Then  converged

End











































I
T 1117

when 11571 is small

Lets r olla for ÉÉenough n

IÉii

I
large small 2

At
ME

Demo

2 2

Demo

1ˢᵗ order:

progress

1.    too small will make progress slow

2.    too large can even diverge

We can use step size    that varies with iteration t 
1.
When loss is convex (Eg. Logistic loss)          Works in theory 2.
and we are guaranteed convergence to minima

When gradients are on average small we might want step size 3.
to be large and vice versa


 

A problematic example for gradient descent:

Taylor's theorem:    f(x) = f(0) + x f’(0) + x  f’’(0)+ …+ x f (0) + … 

ℓ(w) = w[1] + 0.01 w[2] 

Where ∇ℓ(w)[i] = 

ℓ(w + s) ≈ ℓ(w) + s ∇ℓ(w) + O( s ) 


















a

11 11 8

2 2

T
IT

2
1143

2

III
2 2

2

AdaGrad: Adaptive Gradient Descent (different stepsize for 
different coordinates)

2ⁿᵈ order:

if we set η too large, we diverge on first coordinate
1.
if we set η small, first coordinate is good but we are very 2.
slow on second coordinate

Back to ℓ(w) = w[1] + 0.01 w[2] 

Step size for coordinate 2 is a factor of 0.01 times that of coordinate 1

1. Typically second order approximation is appropriate near 
minima, so warm start with gradient descent and finish with 
Newton’s method

2. Hessian size d  matrix and we need to invert hessian, so 
expensive in large dimensions

Input initial guess w0, z0 = 0, t = 0

While not converged:


	 1.  gt= ∇ℓ(wt),  t = t+1

	 2. ∀ i ∈ {1,…,d}, zt[i] = zt-1[i]+ gt[i]

	 3.  ∀ i ∈ {1,…,d}, wt+1[i]  = wt[i] - η gt[i]/√(zt[i] +ε )    

	 3. If   wt - wt+1 <     Then  converged

End

Where ∇ℓ(w) is the hessian matrix of ℓ at w.       ∇ℓ(w)[i,j]= 

ℓ(w + s) ≈ ℓ(w) + s ∇ℓ(w) +  s ∇ℓ(w) s + O( s ) 

Newton’s method: Find s that Minimizes above second order 

approximation  s = -( ∇ ℓ(w)) ∇ℓ(w).  wt+1 = wt -( ∇ ℓ(wt)) ∇ℓ(wt) 




































loss Wix y

lossWix y
t

gell 1 FEB
loss w x y

6 1 or constant often suffices

Stochastic Gradient Descent (SGD):


Typically   ℓ(w) = 

In this case instead of computing ∇ℓ(w)= 

on each iteration, we can instead sub-sample a set B 
consisting of b samples of D on each iteration and 
approximate gradient by 


