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Neural Networks

(Deep Learning)
method we made Linear methoods now Linear bg bmplicit

(fixed) feature mapping x> (x) (which was possibly infinite

dimenstio

wal)

Newral networks, can think of the method as expl,i,ci,’cl,a learning this
feature map ¢. nvented by Frank Rosenblatt in 1963 at Cornell!
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yression with a stngle meuron:
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A single hidden Layer of neurons: (regression with k neurons)
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what happews to the regression if o(a) = a (Linear activation)?

Now- Lets try regression with RELU.

Deep Newral Network: We can stack multiple hiddew layers
one after the other, first layer gives linear boundaries, second
Layer combines corresponding non-Linear functions, thiro
Layer combines non-linear functions output in second layer
and so ow. Depth quickly gives high expressibility.
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tn above exameple, how WAL WERFONS, how many parameters?



Forward Pass (prediotiow):
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as extra feature

e need to learn the weltaghts and bilases ach Layer.
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How easy is it to compute gradients?
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End
1. Compute a's and z's from forward pass (store
them
CViCvvyy
2. Ruwn backward pass using a’s and z’s from
forward pass (computes gradients)




