Neural Networks
(Deep Learning)
in kernel method we made linear methods non linear by implicit (fixed) feature mapping $x \rightarrow \phi(x)$ (which was possibly infinite dimensional)
Neural networks, can think of the method as explicitly learning this feature map ϕ. Invented by Frank Rosenblatt in 1963 at cornell!

A single neuron: $\sigma\left(U^{\top} x+c\right)$
σ (a) is a non-linear activation function u are the weights of the neuron (s) we will learn

Eg: Activation functions:
Relv: Rectitiol linear unit

$$
\sigma(a)=\max \{a, 0\}
$$

$\tanh :$

$$
\sigma(a)=\frac{e^{a}-c^{-a}}{e^{a}+e^{-a}}
$$

Regression with a single neuron:

A single hidden layer of neurons: (regression with k neurons)
$\phi(x)=\begin{aligned} & \sigma(U \vec{x}+\vec{c}) \\ & \vec{c} \text { is a te dimensional vector }\end{aligned}$
u is a ked matrix

EgRelv $\quad h(x)=\omega^{\top} \phi(x)+h=\omega^{\top} \sigma\left(U_{x}+\vec{c}\right)+h$ $=w^{\top} \max (U x+\vec{c}, \overrightarrow{0})+h$

What happens to the regression if $\sigma(a)=$ a (linear activation)?
Now lets try regression with RELU.

Deep Neural Network: We can stack multiple hidden layers one after the other, first layer gives linear boundaries, second layer combines corresponding non-linear functions, third layer combines non-linear functions output in second layer and so on. Depth quickly gives high expressibility.

$$
\phi(x)=\sigma_{3}\left(C \sigma_{2}\left(B \sigma_{1}(A x+\vec{a})+\vec{b}\right)+\vec{c}\right)
$$

$a^{\prime}=\omega^{\prime} z^{0}$
$z^{\prime}=\sigma_{1}\left(a^{\prime}\right) \quad a^{2}=L^{2} z^{\prime} \quad z^{2}=\sigma_{2}\left(a^{2}\right)$
In above example, how many neurons, how many parameters?

Forward Pass (prediction):
$Z_{0}=x$ (Input layer) Typicallyolis different from
FOR $i=1$ to L

$$
\begin{aligned}
& a_{i}=W_{i} z_{i-1}+\vec{b}_{i} \\
& z_{i}=\sigma_{i}\left(a_{i}\right)
\end{aligned}
$$

END
Return Z_{L}

As usual bias can be aborted in each layer by inserting 1 to each layer as extra feature

We need to learn the weights and biases of each layer. we will use gradient descent (or its cousin)!

How easy is it to compute gradients?
warmup with 1 dimensional example:

$$
\begin{aligned}
l(h(x), y) & =\frac{1}{2}(h(x)-y)^{2}
\end{aligned} \quad x \in \mathbb{R} \quad c, c, B, r, A, a \in \mathbb{R}
$$

$$
\begin{aligned}
& C_{c}^{\text {gradientshrt. }}\left[\begin{array}{l}
\frac{\partial l(h(x), y)}{\partial C}=l^{\prime}(h(x), y) \times \frac{\partial z_{3}}{\partial C}=l^{\prime}(h(x), y) \times z_{2} \\
\frac{\partial l(h(x), y)}{\partial c}=l^{\prime}(h(x), y) \times \frac{\partial z_{3}}{\partial c}=l^{\prime}(h(x), y)
\end{array}\right. \\
& B, G\left[\begin{array}{l}
\frac{\partial l(h(x), y)}{\partial B}=l^{\prime}(h(x), y) \times \frac{\partial z_{3}}{\partial B}=l^{\prime}(h(x), y) \sigma^{\prime}\left(a_{2}\right) \frac{\partial a_{2}}{\partial \beta}=l^{\prime}(h(x), y) \sigma^{\prime}\left(a_{2}\right) z_{1}^{\text {compony }}
\end{array}\right]
\end{aligned}
$$

Backward pass (gradient step)

$$
\vec{\delta}_{L}=\nabla l\left(z_{L}, y\right) \odot \sigma_{L}^{\prime}\left(a_{L}\right)
$$

For $y=L-1$ to 1

$$
\begin{aligned}
& W_{j}=W_{j}-\eta \overrightarrow{\delta_{j}} z_{j-1}^{\top} \\
& b_{j}=b_{j}-\eta \vec{\delta}_{j} \\
& \vec{\delta}_{j-1}=\sigma^{\prime}\left(a_{j-1}\right) \odot W_{j}^{\top} \delta_{j}
\end{aligned}
$$

End

1. compute a's and z's from forward pass (store them)
2. Run backward pass using a's and z's from forward pass (computes gradients)
