Neural Networks

(Deep Learning)

In kernel method we made línear methods non línear by implicit

(fixed) feature mapping x→\$\$(x) (which was possibly infinite

dímensional)

Neural networks, can think of the method as explicitly learning this feature map ϕ . Invented by Frank Rosenblatt in 1963 at Cornell!

A single neuron:
$$G^{-}(U^{T}X + c)$$

 $G^{-}(A)$ is a non-linear activation Sunction
 u are the weights of the neuron(s) we will learn
 E_{T} : Activation functions:
Relu: Rectified linear unit
 $G^{-}(A) = max \{ a, 0 \}$
 $G^{-}(A) = \frac{c^{A}}{1+c^{A}}$
 $f^{-}(A) = \frac{c^{A} - c^{-A}}{c^{A} + c^{-A}}$
 $f^{-}(A) = \frac{c^{A} - c^{-A}}{c^{A} + c^{-A}}$
 $f^{-}(A) = \frac{c^{A} - c^{-A}}{c^{A} + c^{-A}}$
 $f^{-}(A) = \frac{c^{A} - c^{-A}}{c^{A} + c^{-A}}$

A single hidden layer of neurons: (regression with k neurons)

Forward Pass (prediction):

$$Z_{o} = x \quad (I_{n}p_{u}l \ layer) \quad Typically or is different from
For $i = 1$ to L others
 $a_{i} = W_{i} Z_{i-1} + G_{i}$ As usual bias can be
 $Z_{i} = G_{i}^{-}(a_{i})$ aborted in each layer by
Return Z_{L} inserting 1 to each layer
We need to learn the weights and biases of each layer.
We will use gradient descent (or its cousin)!
How easy is it to compute gradients?
Warmup with 1 dimensional example:
 $V(a_{i} = C_{i} - (B_{i} - (A_{i} + a_{i}) + F) + c$
 $f(A_{i} = C_{i} - (B_{i} - (A_{i} + a_{i}) + F) + c$
 $f(A_{i} - A_{i}) = C_{i} - (B_{i} - (A_{i} + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + a_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + A_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + A_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + A_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + A_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + A_{i}) + F) + c$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + B_{i}) + C$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (B_{i} - (A_{i}) + C)$
 $f(A_{i}) = C_{i} - (A_{i}) + C)$
 $f(A_{i}) = C$
 $f(A_{i}) = C$
 $f($$$

 $\overline{\mathcal{C}} \circ \overline{F} =$ $e^{\text{Romentwise product}}$ Backward pass (gradient step) $\overline{S}_{L} = \nabla \Omega($ aiti acti asti For g = L-1 to 1 $W_{1} = W_{1} - \rho \vec{S}_{1} \vec{S}_{1-1}$ $b_{j} = b_{j} - 2 S_{j}$ $\vec{S}_{g-1} = \sigma'(a_{g-1}) \circ W_{g}^{T}S_{g}$ End Compute a's and z's from forward pass (store 1. them) 2. Run backward pass using a's and z's from forward pass (computes gradients)