Bagging: Bootstrap Aggregating

1. As long as each sample in the training set has unigque features,

Declslon tree can always obtaiwn o tratning Loss

p

(f depth of Decision tree is shallow it underfits

w

(f we 9o all out own depth it overfits badly to training data
4. Depth is not a fine grained knob for good Blas-variance Tradeoff

20

@

Errorin %
=

1. Ensemble methods: combine multiple mooels
to Lmprove performance

2. ®Boosting: Works to reduce bias (Lmprove
underfitting)

2. Bagging: works to reduce variance (Lmprove
overfitting)

E9g: Decision trees to max depth will
highly overfit

2 4 6

8 10 12 14 16 18 20
Max Tree Depth

- 2 — —_ = — =

e — Y 4 ©

Variance B ag in heron? hoi se

o ourg

Li l | ,

ould draw m datasets of size n D1, Da,... Du drawn itd from P

Sﬂﬂ WE ¢
Ruwn algc

orithm m timees to get hise, hisa,.., how set

A S m

h =1 = hp;

|
— 5

7)

W

hat is the variance of h ?

Z. Xl - m \/‘V ‘ St Mar(&,’ =0 S’% ED()JCO

4 4 /\ V’\
what Ls the vartance of X=1| £ X 7

' i<

What 7§ X - = Xm are correlakd 7

N

Weak QQLJ o% Qavv m;mM*s h _)}'T

why cant we use the above m sample method to reduce variance?
Ans -

Bootstrapping: Simulate m samples Pr,Da,..., Pu as follows:

1. Take original training sample >

2. Create size w data set Diby drawing repeatedly with replacement elements
from sample D uniformly at random

3. Tvaln hez, ..., howown each of these m datasets

Return the average hypothesis:

*

no m
- L = hp
hﬁ“ﬁ' LY

Tysteabion

why does Bagging work?

Say @ was the distribution over samples given by the following

procedure:

1. Draw D of size wn iid from P

2. praw samples from B uniformly at random with replacement

2. while draw of samples from & are not iid, we can show that
marginal distribution of samples matches P

CQcU‘m . gJ.LQ gL = {/ D e /XN\B [UCDY Sim jJQ/‘C/A/‘J QASF e

g/'h')"" 5}%1(})
V- x e JL Qlx =) = Prx=x;)

n
n k =X
N I n—k P ()< - -
Q‘X‘“”)‘Z(k)pf G=p"" 5 R
k=1 ~~

~ Probability
Probability that are pick one of
k copies of z; in D these copies

ii n k(1 — ,)nfkk
nk:1 k b; Di

Expected value of
Binomial Distribution
with parameter p;

E[B(p; ,n)]=np;

1
—np;
n

= p; < TATAAA!! Each data set D} is drawn from P, but not independently
Advantages of Bagging

¢ Easy to implement

« Reduces variance, so has a strong beneficial effect on high variance classifiers.

* As the prediction is an average of many classifiers, you obtain a mean score and
variance. Latter can be interpreted as the uncertainty of the prediction. Especially in
regression tasks, such uncertainties are otherwise hard to obtain. For example,
imagine the prediction of a house price is $300,000. If a buyer wants to decide how
much to offer, it would be very valuable to know if this prediction has standard
deviation +-$10,000 or +-$50,000.

« Bagging provides an unbiased estimate of the test error, which we refer to as the
out-of-bag error. The idea is that each training point was not picked and all the
data sets Dy. If we average the classifiers hj of all such data sets, we obtain a
classifier (with a slightly smaller m) that was not trained on (xi, yi) ever and it is
therefore equivalent to a test sample. If we compute the error of all these
classifiers, we obtain an estimate of the true test error. The beauty is that we can
do this without reducing the training set. We just run bagging as it is intended and
obtain this so called out-of-bag error for free.

More formally, for each training point (xi,y;) € D let S; = {k|(xi,yi) & D} - in
other words S; is a set of all the training sets Dy, which do not contain (X, Y).
Let the averaged classifier over all these data sets be

h; (x) ! Z hi (x).

a |Si keS;

The-of-bag error becomes simply the average error/loss that all these classifiers
yield

1 ~
€ooB = > U(hi(x1), i)
(xi,y;)€D
This is an estimate of the test error, because for each training point we used the
subset of classifiers that never saw that training point during training. if m is
sufficiently large, the fact that we take out some classifiers has no significant effect
and the estimate is pretty reliable.

Random Forest

One of the most famous and useful bagged algorithms is the Random Forest! A
Random Forest is essentially nothing else but bagged decision trees, with a slightly
modified splitting criteria.

The algorithm works as follows:

1. Sample m data sets D1, ..., D,, from D with replacement.

2. For each D; train a full decision tree h;() (max-depth= i
modification:
replacemen
variance of t

3. The final classifier is h(x) = — > iy hi(x).

small

without
is further increases the

The Random Forest is one of the best, most popular and easiest to use out-of-the-box
classifier. There are two reasons for this:

« The RF only has two hyper-parameters, m and k. It is extremely insensitive to both
of these. A good choice for k is k = v/d (where d denotes the number of features).
You can set m as large as you can afford.

* Decision trees do not require a lot of preprocessing. For example, the features can
be of different scale, magnitude, or slope. This can be highly advantageous in
scenarios with heterogeneous data, for example the medical settings where
features could be things like blood pressure, age, gender, ..., each of which is
recorded in completely different units.

