

4/25/23, 11:01 AM 19: Boosting

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 1/5

19: Boosting

Boosting reduces Bias

Scenario: Hypothesis class , whose set of classifiers has large bias and the training
error is high (e.g. CART trees with very limited depth.)
Famous question: In his machine learning class project in 1988 Michael Kearns famously
asked the question: Can weak learners () be combined to generate a strong learner with
low bias?
Famous answer: Yes! (Robert Schapire in 1990)
Solution: Create ensemble classifier . This ensemble classifier is
built in an iterative fashion. In iteration we add the classifier to the ensemble. At
test time we evaluate all classifier and return the weighted sum.
The process of constructing such an ensemble in a stage-wise fashion is very similar to
gradient descent. However, instead of updating the model parameters in each iteration, we
add functions to our ensemble.
Let denote a (convex and differentiable) loss function. With a little abuse of notation we
write

Assume we have already finished iterations and already have an ensemble classifier
. Now in iteration we want to add one more weak learner to the

ensemble. To this end we search for the weak learner that minimizes the loss the most,

Once has been found, we add it to our ensemble, i.e. .
How can we find such ?
Answer: Use gradient descent in function space. In function space, inner product can be
defined as . Since we only have training set, we define

.

Gradient descent in functional space

Given , we want to find the step-size and (weak learner) to minimize the loss
. Use Taylor Approximation on .

This approximation (of as a linear function) only holds within a small region around
, i. as long as is small. We therefore fix it to a small constant (e.g.). With

the step-size fixed, we can use the approximation above to find an almost optimal :

We can write (each prediction is an
input to the loss function)

So we can do boosting if we have an algorithm to solve

We need a function . In order to
make progress this does not have to be great. We still make progress as long as

.

Generic boosting (a.k.a Anyboost)

http://www.cis.upenn.edu/~mkearns/papers/boostnote.pdf
http://www.cs.princeton.edu/~schapire/papers/strengthofweak.pdf
http://en.wikipedia.org/wiki/Taylor_series

4/25/23, 11:01 AM 19: Boosting

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 2/5

Case study #1: Gradient Boosted Regression Tree(GBRT)

Classification () or (even multi-dimensional) regression ()
Weak learners, , are regressors, , typically fixed-depth (e.g.
depth=4) regression trees (hence the name).
Step size is fixed to a small constant (hyper-parameter).
Loss function: Any differentiable convex loss that decomposes over the samples

In order to use regression trees for gradient boosting, we must be able to find a tree

that maximizes where .

We will make two assumptions:

1. First, we assume that = constant. This is simple to do (we normalize the
predictions) and important because we could always decrease by
rescaling with a large constant. By fixing to a constant we are
essentially fixing the vector to lie on a circle, and we are only concerned with its
direction but not its length.

2. CART trees are negation closed, i.e. => . (This is generally true.)
3. We can define the negative graident as .

 (This is the original AnyBoost formulation.)
= (Swapping in for and multiplying by 2, which is a
constant.)
= (Adding constant .)

=
In other words, we can use the good old Regression trees and feed in the value as labels
for each Each iteration we build a new tree for a different set of "labels" .

If the loss function is the squared loss, i.e. , then it is
easy to show that

which is simply the residual, i.e. is the vector pointing from to . However, it is
important that you can use any other differentiable and convex loss function , and the
solution for your next weak learner will always be the regression tree minimizing the
squared loss.

GBRT in Pseudo Code

Case Study #2: AdaBoost

Setting: Classification ()

4/25/23, 11:01 AM 19: Boosting

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 3/5

Weak learners: are binary,
Step-size: We perform line-search to obtain best step-size .
Loss function: Exponential loss

Finding the best weak learner

First we compute the gradient .

For notational convenience (and for reason that will become clear in a little bit), let us
define , where is a normalizing factor so that

 Note that the normalizing constant is identical to the loss function. Each
weight therefore has a very nice interpretation. It is the relative contribution of the
training point towards the overall loss.

In order to find the best next weak learner, we need to solve the optimization problem: (in
the following, we will make use of the fact that .)

Let us denote this weighted classification error as . So for AdaBoost,
we only need a classifier that can take training data and a distribution over the training set
(i.e. normalzied weights for all training samples) and which returns a classifier
that reduces the weighted classification error of these training samples. It doesn't have
to do all that well, in order for the inner-product to be negative, it just needs
less than weighted training error.

Finding the stepsize

In the previous example, GBRT, we set the stepsize to be a small constant. As it turns
out, in the AdaBoost setting we can find the optimal stepsize (i.e. the one that minimizes
the most) in closed form every time we take a "gradient" step.

When we are given , we would like to solve the following optimization problem:

We differentiate w.r.t. and equate with zero:

It is unusual that we can find the optimal step-size in such a simple closed form. One
consequence is that AdaBoost converges extremely fast.

Re-normalization

After you take a step, i.e. , you need to re-compute all the weights and
then re-normalize. It is however straight-forward to show that the unnormalized weight

4/25/23, 11:01 AM 19: Boosting

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 4/5

is updated as

and that the normalizer becomes

Putting these two together we obtain the following multiplicative update rule:

AdaBoost Pseudo-code

A few remarks:

As long as is negation closed (this means for every we must also have
), it cannot be that the error . The reason is simply that if has error

, it must be that has error . So you could just flip to and obtain a
classifier with smaller error. As was found by minimizing the error, this is a
contradiction.
The inner loop can terminate as the error , and in most cases it will converge to

 over time. In that case the latest weak learner is only as good as a coin toss and

cannot benefit the ensemble (therefore boosting terminates). Also note that if
the step-size would be zero.

Further analysis

Let us examine each one of these updates.

The weight update:

as, is either (if classified correctly by this weak learner) or
(otherwise), it follows that this weight update multiplies the weight either by a
factor if it was classified incorrectly (i.e. increases the weights), or by a factor

 if it was classified correctly (i.e. decreases the weight).
Normalization update:

Previously we established that the normalizer is identical to the loss. We can
therefore use it to bound the loss function after iterations:

(the factor comes from the fact that the initial , when all weights are .) If
we define , we can establish

The function is maximized at . But we know that each (or else

the algorithm would have terminated). Therefore and we can re-write it

as , for some . This leaves us with

4/25/23, 11:01 AM 19: Boosting

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 5/5

In other words, the training loss is decreasing exponentially!

In fact, we can go even further and compute after how many iterations we must have
zero training error. Note that the training loss is an upper bound on the training error
(defined as - simply because in all cases. We
can then compute the number of steps required until the loss is less than , which
would imply that not a single training input is misclassified.

This is an amazing result. It shows that after iterations your training error
must be zero. In practice it often makes sense to keep boosting even after you make
no more mistakes on the training set.

Summary

Boosting is a great way to turn a week classifier into a strong classifier. It defines a whole
family of algorithms, including Gradient Boosting, AdaBoost, LogitBoost, and many others
... Gradient Boosted Regression Trees is one of the most popular algorithms for Learning to
Rank, the branch of machine learning focused on learning ranking functions, for example
for web search engines. A few additional things to know:

The step size is often referred to as shrinkage.
Some people do not consider gradient boosting algorithms to be part of the boosting
family, because they have no guarantee that the training error decreases
exponentially. Often these algorithms are referred to as stage-wise regression instead.
Inspired by Breiman's Bagging, stochastic gradient boosting subsamples the training
data for each weak learner. This combines the benefits of bagging and boosting. One
variant is to subsample only data points without replacement, which speeds up
the training process.
One advantage of boosted classifiers is that during test time the computation

 can be stopped prematurely if it becomes clear which way
the prediction goes. This is particularly interesting in search engines, where the exact
ranking of results is typically only interesting for the top 10 search results. Stopping
the evaluation of lower ranked search results can lead to tremendous speed ups. A
similar approach is also used by the Viola-Jones algorithm to speed up face detection
in images. Here, the algorithm scans regions of an image to detect possible faces. As
almost all regions and natural images do not contain faces, there are huge savings if
the evaluation can be stopped after just a few weak learners are evaluated. These
classifiers are referred to as cascades, that spend very little time on the common case
(no face), but more time on the rare interesting case (face). With this approach Viola
and Jones were the first to solve face recognition in real-time on low performance
hardware (e.g. cameras).
AdaBoost is an extremely powerful algorithm, that turns any weak learner that can
classify any weighted version of the training set with below error into a strong
learner whose training error decreases exponentially and that requires only
steps until it is consistent.

https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/AdaBoost
https://en.wikipedia.org/wiki/LogitBoost
https://mitpress.mit.edu/books/boosting
https://en.wikipedia.org/wiki/Learning_to_rank
https://en.wikipedia.org/wiki/Viola%C3%A2%E2%82%AC%E2%80%9CJones_object_detection_framework

R
ound

1
R
ound

1
R
ound

1
R
ound

1
R
ound

1h1

α ε11 =0.30
=0.42

2 D

R
ound

2
R
ound

2
R
ound

2
R
ound

2
R
ound

2

α ε22 =0.21
=0.65

h2
3 D

R
ound

3
R
ound

3
R
ound

3
R
ound

3
R
ound

3

h3

α ε33 =0.92
=0.14

F
inal

C
lassifier

F
inal

C
lassifier

F
inal

C
lassifier

F
inal

C
lassifier

F
inal

C
lassifier

Hfinal
+ 0.92

+ 0.65
0.42

sign
==

