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18: Bagging
Also known as Bootstrap Aggregating (Breiman 96). Bagging is an ensemble method.

Bagging Reduces Variance

Remember the Bias / Variance decomposition:

Our goal is to reduce the variance term: .
For this, we want .

Weak law of large numbers

The weak law of large numbers says (roughly) for i.i.d. random variables  with mean
, we have,

Apply this to classifiers: Assume we have m training sets  drawn from
. Train a classifier on each one and average result:

We refer to such an average of multiple classifiers as an ensemble of classifiers.
Good news: If  the variance component of the error must also vanish, i.e.

Problem:We don't have  data sets , we only have D.

Solution: Bagging (Bootstrap Aggregating)

Simulate drawing from P by drawing uniformly with replacement from the set D.
i.e. let  be a probability distribution that picks a training sample 
from  uniformly at random. More formally,  with

.
We sample the set , i.e. , and  is picked with replacement from

.

Q: What is ?

Bagged classifier: 

Notice: (cannot use W.L.L.N here, W.L.L.N only works for i.i.d.
samples). However, in practice bagging still reduces variance very effectively.

Analysis

Although we cannot prove that the new samples are i.i.d., we can show that they are
drawn from the original distribution . Assume P is discrete, with  over
some set  (N very large) (let's ignore the label for now for simplicity)

= + +E[( (x) − y ]hD )2

  
Error

E[( (x) − (x) ]hD h̄ )2

  
Variance

E[( (x) − (x) ]h̄ ȳ )2
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There is a simple intuitive argument why . So far we
assumed that you draw  from  and then  picks a sample from . However, you
don't have to do it in that order. You can also view sampling from  in reverse order:
Consider that you first use  to reserve a "spot" in , i.e. a number from 1,...,n, where
i means that you sampled the  data point in . So far you only have the slot, , and
you still need to fill it with a data point . You do this by sampling  from

. It is now obvious that which slot you picked doesn't really matter, so we have
.

Bagging summarized

1. Sample  data sets  from  with replacement.
2. For each  train a classifier 

3. The final classifier is .

In practice larger  results in a better ensemble, however at some point you will obtain
diminishing returns. Note that setting  unnecessarily high will only slow down your
classifier but will not increase the error of your classifier.

Advantages of Bagging

Easy to implement
Reduces variance, so has a strong beneficial effect on high variance classifiers.
As the prediction is an average of many classifiers, you obtain a mean score and
variance. Latter can be interpreted as the uncertainty of the prediction. Especially in
regression tasks, such uncertainties are otherwise hard to obtain. For example,
imagine the prediction of a house price is $300,000. If a buyer wants to decide how
much to offer, it would be very valuable to know if this prediction has standard
deviation +-$10,000 or +-$50,000.

Bagging provides an unbiased estimate of the test error, which we refer to as the
out-of-bag error. The idea is that each training point was not picked and all the
data sets . If we average the classifiers  of all such data sets, we obtain a
classifier (with a slightly smaller ) that was not trained on  ever and it is
therefore equivalent to a test sample. If we compute the error of all these
classifiers, we obtain an estimate of the true test error. The beauty is that we can
do this without reducing the training set. We just run bagging as it is intended and
obtain this so called out-of-bag error for free.

More formally, for each training point  let  - in
other words  is a set of all the training sets , which do not contain .
Let the averaged classifier over all these data sets be

The-of-bag error becomes simply the average error/loss that all these classifiers
yield
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This is an estimate of the test error, because for each training point we used the
subset of classifiers that never saw that training point during training. if  is
sufficiently large, the fact that we take out some classifiers has no significant effect
and the estimate is pretty reliable.

Random Forest

One of the most famous and useful bagged algorithms is the Random Forest! A
Random Forest is essentially nothing else but bagged decision trees, with a slightly
modified splitting criteria.

The algorithm works as follows:

1. Sample  data sets  from  with replacement.
2. For each  train a full decision tree  (max-depth= ) with one small

modification: before each split randomly subsample  features (without
replacement) and only consider these for your split. (This further increases the
variance of the trees.)

3. The final classifier is .

The Random Forest is one of the best, most popular and easiest to use out-of-the-box
classifier. There are two reasons for this:

The RF only has two hyper-parameters,  and . It is extremely insensitive to both
of these. A good choice for  is  (where  denotes the number of features).
You can set  as large as you can afford.
Decision trees do not require a lot of preprocessing. For example, the features can
be of different scale, magnitude, or slope. This can be highly advantageous in
scenarios with heterogeneous data, for example the medical settings where
features could be things like blood pressure, age, gender, ..., each of which is
recorded in completely different units.

Useful variants of Random Forests:

Split each training set into two partitions , where .
Build the tree on  and estimate the leaf labels on . You must stop splitting if
a leaf has only a single point in  in it. This has the advantage that each tree and
also the RF classifier become consistent.
Do not grow each tree to its full depth, instead prune based on the leave out
samples. This can further improve your bias/variance trade-off.

m

m , … ,D1 Dm D

Dj ()hj ∞
k ≤ d

h(x) = (x)1
m
∑m

j=1 hj

m k
k k = d

−−√ d
m

= ∪Dl DA
l DB

l ∩ = ∅DA
l DB

l

DA
l DB

l

DB
l

https://en.wikipedia.org/wiki/Consistency_(statistics)

