
4/13/23, 11:34 AM KD Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 1/6

KD Trees
Cornell CS 4/5780, Spring 2023

Time Complexity of k-NN

Let's look at the time complexity of k-NN.
We are in a -dimensional space.
To make it easier, let's assume we've already processed some
number of inputs, and we want to know the time complexity of
adding one more data point.
When training, k-NN simply memorizes the labels of each data
point it sees.
This means adding one more data point is .
When testing, we need to compute the distance between our new
data point and all of the data points we trained on.
If is the number of data points we have trained on, then our
time complexity for training is .
Classifying one test input is also .
To achieve the best accuracy we can, we would like our training
data set to be very large (), but this will soon become a
serious bottleneck during test time.
Goal: Can we make k-NN faster during testing? We can if we use
clever data structures.

k-Dimensional Trees

The general idea of KD-trees is to partition the feature space.
We want discard lots of data points immediately because their
partition is further away than our closest neighbors.
We partition the following way:

1. Divide your data into two halves, e.g. left and right, along
one feature.

2. For each training input, remember the half it lies in.

4/13/23, 11:34 AM KD Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 2/6

How can this partitioning speed up testing?
Let's think about it for the one neighbor case.

1. Identify which side the test point lies in, e.g. the right side.
2. Find the nearest neighbor of in the same side. The

denotes that our nearest neighbor is also on the right side.
3. Compute the distance between and the dividing "wall".

Denote this as . If you are done, and we
get a 2x speedup.

Fig: Partitioning the feature space.

In other words: if the distance to the partition is larger than the
distance to our closest neighbor, we know that none of the data
points inside that partition can be closer.
We can avoid computing the distance to any of the points in that
entire partition.
We can prove this formally with the triangular inequality. (See
Figure 2 for an illustration.)
Let denote the distance between our test point and a
candidate . We know that lies on the other side of the wall, so
this distance is dissected into two parts ,
where is the part of the distance on side of the wall and
is the part of the distance on side of the wall. Also let
denote the shortest distance from to the wall. We know that

 and therefore it follows that

This implies that if is already larger than the distance to the
current best candidate point for the nearest neighbor, we can
safely discard as a candidate.

4/13/23, 11:34 AM KD Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 3/6

Fig 2: The bounding of the distance between and with
KD-trees and Ball trees (here is drawn twice, once for

each setting). The distance can be dissected into two
components , where is the outside

ball/box component and the component inside the
ball/box. In both cases can be lower bounded by the

distance to the wall, , or ball, , respectively i.e.
.

Quiz: Construct a case where this does not work.

KD-tree data structure

Fig: The partitioned feature space with corresponding KD-
tree.

Tree Construction:

4/13/23, 11:34 AM KD Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 4/6

1. Split data recursively in half on exactly one feature.
2. Rotate through features.

When rotating through features, a good heuristic is to pick the
feature with maximum variance.

Example:

Which partitions can be pruned?
Which must be searched and in what order?
Pros:

Exact.
Easy to build.

Cons:

Curse of Dimensionality makes KD-Trees ineffective for
higher number of dimensions.
All splits are axis aligned.

Approximation: Limit search to leafs only.

Ball-trees

Similar to KD-trees, but instead of boxes use hyper-spheres
(balls). (See Figure 2 for an illustration.)
As before we can dissect the distance and use the triangular
inequality

4/13/23, 11:34 AM KD Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 5/6

If the distance to the ball, , is larger than distance to the
currently closest neighbor, we can safely ignore the ball and all
points within.
The ball structure allows us to partition the data along an
underlying manifold that our points are on, instead of repeatedly
dissecting the entire feature space (as in KD-Trees).

Ball-tree Construction

Input: set , ,

Note: Steps 3 & 4 pick the direction with a large spread (
)

Ball-Tree Use

Same as KD-Trees
Slower than KD-Trees in low dimensions () but a lot faster
in high dimensions. Both are affected by the curse of
dimensionality, but Ball-trees tend to still work if data exhibits
local structure (e.g. lies on a low-dimensional manifold).

Summary

-NN is slow during testing because it does a lot of
unecessary work.
KD-trees partition the feature space so we can rule out whole
partitions that are further away than our closest neighbors.
However, the splits are axis aligned which does not extend
well to higher dimensions.
Ball-trees partition the manifold the points are on, as
opposed to the whole space. This allows it to perform much

4/13/23, 11:34 AM KD Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 6/6

better in higher dimensions.

4/13/23, 11:31 AM 17: Decision Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 1/6

Decision Trees
Cornell CS 4/5780

Spring 2023

Motivation for Decision Trees

Let us return to the k-nearest neighbor classifier. In low dimensions it is actually
quite powerful: It can learn non-linear decision boundaries and naturally can
handle multi-class problems. There are however a few catches: kNN uses a lot of
storage (as we are required to store the entire training data), the more training
data we have the slower it becomes during testing (as we need to compute
distances to all training inputs), and finally we need a good distance metric.

Most data that is interesting has some inherent structure. In the k-NN case we
make the assumption that similar inputs have similar neighbors. This would
imply that data points of various classes are not randomly sprinkled across the
space, but instead appear in clusters of more or less homogeneous class
assignments. Although there are efficient data structures enable faster nearest
neighbor search, it is important to remember that the ultimate goal of the
classifier is simply to give an accurate prediction. Imagine a binary classification
problem with positive and negative class labels. If you knew that a test point falls
into a cluster of 1 million points with all positive label, you would know that its
neighbors will be positive even before you compute the distances to each one of
these million distances. It is therefore sufficient to simply know that the test
point is an area where all neighbors are positive, its exact identity is irrelevant.

Decision trees are exploiting exactly that. Here, we do not store the training data,
instead we use the training data to build a tree structure that recursively divides
the space into regions with similar labels. The root node of the tree represents the
entire data set. This set is then split roughly in half along one dimension by a
simple threshold . All points that have a feature value fall into the right child
node, all the others into the left child node. The threshold and the dimension
are chosen so that the resulting child nodes are purer in terms of class
membership. Ideally all positive points fall into one child node and all negative
points in the other. If this is the case, the tree is done. If not, the leaf nodes are
again split until eventually all leaves are pure (i.e. all its data points contain the
same label) or cannot be split any further (in the rare case with two identical
points of different labels).

Decision trees have several nice advantages over nearest neighbor algorithms: 1.
once the tree is constructed, the training data does not need to be stored. Instead,
we can simply store how many points of each label ended up in each leaf -
typically these are pure so we just have to store the label of all points; 2. decision
trees are very fast during test time, as test inputs simply need to traverse down
the tree to a leaf - the prediction is the majority label of the leaf; 3. decision trees
require no metric because the splits are based on feature thresholds and not
distances.

Binary decision tree. Only labels are stored.

4/13/23, 11:31 AM 17: Decision Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 2/6

New goal: Build a tree that is:

1. Maximally compact
2. Only has pure leaves

Quiz: Is it always possible to find a consistent tree?
Yes, if and only if no two input vectors have identical features but different labels
Bad News! Finding a minimum size tree is NP-Hard!!
Good News: We can approximate it very effectively with a greedy strategy. We
keep splitting the data to minimize an impurity function that measures label
purity amongst the children.

Impurity Functions

Data: , where is the number of
classes

Gini impurity

Let where (all inputs with labels)

Define:

Note: This is different from Gini coefficient. See Gini impurity (not to be
confused with the Gini Coefficient) of a leaf:

Fig: The Gini Impurity Function in the binary case reaches its maximum at
.

Gini impurity of a tree:

where:

4/13/23, 11:31 AM 17: Decision Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 3/6

Entropy

Let be defined as before. We know what we don't want (Uniform
Distribution): This is the worst case since each leaf is
equally likely. Prediction is random guessing. Define the impurity as how close
we are to uniform. Use -Divergence to compute "closeness"
Note: -Divergence is not a metric because it is not symmetric, i.e.,

.
Let be the uniform label/distribution. i.e.

Entropy over tree:

ID3-Algorithm

Base Cases:

The Equation above indicates the ID3 algorithm stop under two cases. The first
case is that all the data points in a subset of have the same label. If this happens,
we should stop splitting the subset and create a leaf with label . The other case is
there are no more attributes could be used to split the subset. Then we create a
leaf and label it with the most common .

Try all features and all possible splits. Pick the split that minimizes impurity
 where feature and threshold

Recursion:

Quiz: Why don't we stop if no split can improve impurity?
Example: XOR

4/13/23, 11:31 AM 17: Decision Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 4/6

Fig 4: Example XOR

First split does not improve impurity
Decision trees are myopic

Regression Trees

CART: Classification and Regression Trees

Assume labels are continuous:
Impurity: Squared Loss

At leaves, predict . Finding best split only costs .

Fig: CART

CART summary:

CART are very light weight classifiers
Very fast during testing
Usually not competitive in accuracy but can become very strong through
bagging (Random Forests) and boosting (Gradient Boosted Trees)

4/13/23, 11:31 AM 17: Decision Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 5/6

Fig: ID3-trees are prone to overfitting as the tree depth increases. The left
plot shows the learned decision boundary of a binary data set drawn from
two Gaussian distributions. The right plot shows the testing and training

errors with increasing tree depth.

Parametric vs. Non-parametric algorithms

So far we have introduced a variety of algorithms. One can categorize these into
different families, such as generative vs. discriminative, or probabilistic vs. non-
probabilistic. Here we will introduce another one, parametric vs. non-
parametric.

A parametric algorithm is one that has a constant set of parameters, which is
independent of the number of training samples. You can think of it as the amount
of much space you need to store the trained classifier. An examples for a
parametric algorithm is the Perceptron algorithm, or logistic regression. Their
parameters consist of , which define the separating hyperplane. The
dimension of depends of the dimension of the training data, but not on how
many training samples you use for training.

In contrast, the number of parameters of a non-parametric algorithm scales as a
function of the training samples. An example of a non-parametric algorithm is
the -Nearest Neighbors classifier. Here, during "training" we store the entire
training data -- so the parameters that we learn are identical to the training set
and the number of parameters (/the storage we require) grows linearly with the
training set size.

An interesting edge case is kernel-SVM. Here it depends very much which kernel
we are using. E.g. linear SVMs are parametric (for the same reason as the
Perceptron or logistic regression). So if the kernel is linear the algorithm is clearly
parametric. However, if we use an RBF kernel then we cannot represent the
classifier of a hyper-plane of finite dimensions. Instead we have to store the
support vectors and their corresponding dual variables -- the number of which
is a function of the data set size (and complexity). Hence, the kernel-SVM with an
RBF kernel is non-parametric. A strange in-between case is the polynomial
kernel. It represents a hyper-plane in an extremely high but still finite-
dimensional space. So technically one could represent any solution of an SVM
with a polynomial kernel as a hyperplane in an extremely high dimensional space
with a fixed number of parameters, and the algorithm is therefore (technically)
parametric. However, in practice this is not practical. Instead, it is almost always
more economical to store the support vectors and their corresponding dual
variables (just like with the RBF kernel). It therefore is technically parametric but
for all means and purposes behaves like a non-parametric algorithm.

4/13/23, 11:31 AM 17: Decision Trees

file:///Users/kilianweinberger/Documents/teaching/CS4780/CS4780MasterCornell/2023Spring/WebSite/lectures/temp.html 6/6

Decision Trees are also an interesting case. If they are trained to full depth they
are non-parametric, as the depth of a decision tree scales as a function of the
training data (in practice). If we however limit the tree depth by a
maximum value they become parametric (as an upper bound of the model size is
now known prior to observing the training data).

