Kernels

Cornell CS 4/578o (Spring 2023)

Linear classifiers are great, but what if there exists no linear decision boundary? As it turns out, there is an elegant way to incorporate non-linearities into most linear classifiers.

Handcrafted Feature Expansion

We can make linear classifiers non-linear by applying basis function (feature transformations) on the input feature vectors. Formally, for a data vector $\mathbf{x} \in \mathbb{R}^{d}$, we apply the transformation $\mathbf{x} \rightarrow \phi(\mathbf{x})$ where $\phi(\mathbf{x}) \in \mathbb{R}^{D}$. Usually $D \gg d$ because we add dimensions that capture non-linear interactions among the original features.

Advantage: It is simple, and your problem stays convex and well behaved. (i.e. you can still use your original gradient descent code, just with the higher dimensional representation)

Disadvantage: $\phi(\mathbf{x})$ might be very high dimensional.
Consider the following example: $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{d}\end{array}\right)$, and define $\phi(\mathbf{x})=\left(\begin{array}{c}1 \\ x_{1} \\ \vdots \\ x_{d} \\ x_{1} x_{2} \\ \vdots \\ x_{d-1} x_{d} \\ \vdots \\ x_{1} x_{2} \cdots x_{d}\end{array}\right)$.
Quiz: What is the dimensionality of $\phi(\mathbf{x})$?

This new representation, $\phi(\mathbf{x})$, is very expressive and allows for complicated nonlinear decision boundaries - but the dimensionality is extremely high. This makes our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the much higher dimensional space, without ever computing a single vector $\phi(\mathbf{x})$ or ever computing the full vector \mathbf{w}. It is a little magical.

It is based on the following observation: If we use gradient descent with any one of our standard loss functions, the gradient is a linear combination of the input samples. For example, let us take a look at the squared loss:

$$
\ell(\mathbf{w})=\sum_{i=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}
$$

The gradient descent rule, with step-size/learning-rate $s>0$ (we denoted this as $\alpha>0$ in our previous lectures), updates \mathbf{w} over time,

$$
w_{t+1} \leftarrow w_{t}-s\left(\frac{\partial \ell}{\partial \mathbf{w}}\right) \text { where: } \frac{\partial \ell}{\partial \mathbf{w}}=\sum_{i=1}^{n} \underbrace{2\left(\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}\right)}_{\gamma_{i}: \text { function of } \mathbf{x}_{i}, y_{i}} \mathbf{x}_{i}=\sum_{i=1}^{n} \gamma_{i} \mathbf{x}_{i}
$$

We will now show that we can express \mathbf{w} as a linear combination of all input vectors,

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i} .
$$

Since the loss is convex, the final solution is independent of the initialization, and we can initialize \mathbf{w}^{0} to be whatever we want. For convenience, let us pick $\mathbf{w}_{0}=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$. For this initial choice of \mathbf{w}_{0}, the linear combination in $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$ is trivially $\alpha_{1}=\cdots=\alpha_{n}=0$. We now show that throughout the entire gradient descent optimization such coefficients $\alpha_{1}, \ldots, \alpha_{n}$ must always exist, as we can re-write the gradient updates entirely in terms of updating the α_{i} coefficients:

Formally, the argument is by induction. \mathbf{w} is trivially a linear combination of our training vectors for \mathbf{w}_{0} (base case). If we apply the inductive hypothesis for \mathbf{w}_{t} it follows for \mathbf{w}_{t+1}.

The update-rule for α_{i}^{t} is thus

$$
\alpha_{i}^{t}=\alpha_{i}^{t-1}-s \gamma_{i}^{t-1}, \text { and we have } \alpha_{i}^{t}=-s \sum_{r=0}^{t-1} \gamma_{i}^{r}
$$

In other words, we can perform the entire gradient descent update rule without ever expressing \mathbf{w} explicitly. We just keep track of the n coefficients $\alpha_{1}, \ldots, \alpha_{n}$. Now that \mathbf{w} can be written as a linear combination of the training set, we can also express the inner-product of \mathbf{w} with any input \mathbf{x}_{i} purely in terms of innerproducts between training inputs:

$$
\mathbf{w}^{\top} \mathbf{x}_{j}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}
$$

Consequently, we can also re-write the squared-loss from $\ell(\mathbf{w})=\sum_{i=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}$ entirely in terms of inner-product between training inputs:

$$
\ell(\alpha)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \alpha_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}
$$

During test-time we also only need these coefficients to make a prediction on a test-input x_{t}, and can write the entire classifier in terms of inner-products between the test point and training points:

$$
h\left(\mathbf{x}_{t}\right)=\mathbf{w}^{\top} \mathbf{x}_{t}=\sum_{j=1}^{n} \alpha_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{t}
$$

Do you notice a theme? The only information we ever need in order to learn a hyper-plane classifier with the squared-loss is inner-products between all pairs of data vectors.

Inner-Product Computation

Let's go back to the previous example, $\phi(\mathbf{x})=\left(\begin{array}{c}1 \\ x_{1} \\ \vdots \\ x_{d} \\ x_{1} x_{2} \\ \vdots \\ x_{d-1} x_{d} \\ \vdots \\ x_{1} x_{2} \cdots x_{d}\end{array}\right)$.
The inner product $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$ can be formulated as:
$\phi(\mathbf{x})^{\top} \phi(\mathbf{z})=1 \cdot 1+x_{1} z_{1}+x_{2} z_{2}+\cdots+x_{1} x_{2} z_{1} z_{2}+\cdots+x_{1} \cdots x_{d} z_{1} \cdots z_{d}=\prod_{k=1}^{d}(1+:$
The sum of 2^{d} terms becomes the product of d terms. We can compute the innerproduct from the above formula in time $O(d)$ instead of $O\left(2^{d}\right)$! We define the function

$$
\underbrace{\mathbf{k}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}_{\text {this is called the } \mathbf{k e r n e l} \text { function }}=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right) .
$$

With a finite training set of n samples, inner products are often pre-computed and stored in a Kernel Matrix:

$$
\mathrm{K}_{i j}=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

If we store the matrix K , we only need to do simple inner-product look-ups and low-dimensional computations throughout the gradient descent algorithm. The final classifier becomes:

$$
h\left(\mathbf{x}_{t}\right)=\sum_{j=1}^{n} \alpha_{j} \mathrm{k}\left(\mathbf{x}_{j}, \mathbf{x}_{t}\right)
$$

During training in the new high dimensional space of $\phi(\mathbf{x})$ we want to compute γ_{i} through kernels, without ever computing any $\phi\left(\mathbf{x}_{i}\right)$ or even \mathbf{w}. We previously established that $\mathbf{w}=\sum_{j=1}^{n} \alpha_{j} \phi\left(\mathbf{x}_{j}\right)$, and $\gamma_{i}=2\left(\mathbf{w}^{\top} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)$. It follows that $\left.\gamma_{i}=2\left(\sum_{j=1}^{n} \alpha_{j} K_{i j}\right)-y_{i}\right)$. The gradient update in iteration $t+1$ becomes

$$
\left.\alpha_{i}^{t+1} \leftarrow \alpha_{i}^{t}-2 s\left(\sum_{j=1}^{n} \alpha_{j}^{t} K_{i j}\right)-y_{i}\right)
$$

As we have n such updates to do, the amount of work per gradient update in the transformed space is $O\left(n^{2}\right)$--- far better than $O\left(2^{d}\right)$.

General Kernels

Below are some popular kernel functions:
Linear: $\mathrm{K}(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z}$.
(The linear kernel is equivalent to just using a good old linear classifier - but it can be faster to use a kernel matrix if the dimensionality d of the data is high.)

Polynomial: $\mathrm{K}(\mathbf{x}, \mathbf{z})=\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{d}$.
Radial Basis Function (RBF) (aka Gaussian Kernel): $K(\mathbf{x}, \mathbf{z})=e^{\frac{-\|\mathbf{x}-\mathbf{z}\|^{2}}{\sigma^{2}}}$.

The RBF kernel is the most popular Kernel! It is a Universal approximator!! Its corresponding feature vector is infinite dimensional and cannot be computed. However, very effective low dimensional approximations exist (see this paper).

Exponential Kernel: $\mathrm{K}(\mathbf{x}, \mathbf{z})=e^{\frac{-\|\mathbf{x}-\mathbf{z}\|}{2 \sigma^{2}}}$
Laplacian Kernel: $\mathrm{K}(\mathbf{x}, \mathbf{z})=e^{\frac{-|\mathbf{x}-\mathbf{z}|}{\sigma}}$
Sigmoid Kernel: $K(\mathbf{x}, \mathbf{z})=\tanh \left(\mathbf{a x}^{\top}+c\right)$

Kernel functions

Can any function $\mathrm{K}(\cdot, \cdot) \rightarrow \mathcal{R}$ be used as a kernel?
No, the matrix $\mathrm{K}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ has to correspond to real inner-products after some transformation $\mathbf{x} \rightarrow \phi(\mathbf{x})$. This is the case if and only if K is positive semidefinite.

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite iff $\forall \mathbf{q} \in \mathbb{R}^{n}, \mathbf{q}^{\top} A \mathbf{q} \geq 0$

Remember $\mathrm{K}_{i j}=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)$. So $\mathrm{K}=\Phi^{\top} \Phi$, where $\Phi=\left[\phi\left(\mathbf{x}_{1}\right), \ldots, \phi\left(\mathbf{x}_{n}\right)\right]$. It follows that K is p.s.d., because $\mathbf{q}^{\top} K \mathbf{q}=\left(\Phi^{\top} \mathbf{q}\right)^{2} \geq 0$. Inversely, if any matrix \mathbf{A} is p.s.d., it can be decomposed as $A=\Phi^{\top} \Phi$ for some realization of Φ.

You can even define kernels over sets, strings, graphs and molecules.

Figure 1: The demo shows how kernel function solves the problem linear classifiers can not solve. RBF works well with the decision boundary in this case.

