Kernels

Cornell CS 4/5780 (Spring 2023)

Linear classifiers are great, but what if there exists no linear decision boundary? As it turns out, there is an elegant way to incorporate non-linearities into most linear classifiers.

Handcrafted Feature Expansion

We can make linear classifiers non-linear by applying basis function (feature transformations) on the input feature vectors. Formally, for a data vector $\mathbf{x} \in \mathbb{R}^d$, we apply the transformation $\mathbf{x} \to \phi(\mathbf{x})$ where $\phi(\mathbf{x}) \in \mathbb{R}^D$. Usually $D \gg d$ because we add dimensions that capture non-linear interactions among the original features.

Advantage: It is simple, and your problem stays convex and well behaved. (i.e. you can still use your original gradient descent code, just with the higher dimensional representation)

Disadvantage: $\phi(\mathbf{x})$ might be very high dimensional.

Consider the following example:
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}$$
, and define $\phi(\mathbf{x}) = \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_d \\ x_1 x_2 \\ \vdots \\ x_{d-1} x_d \\ \vdots \\ x_1 x_2 \cdots x_d \end{pmatrix}$.

Quiz: What is the dimensionality of $\phi(\mathbf{x})$?

This new representation, $\phi(\mathbf{x})$, is very expressive and allows for complicated nonlinear decision boundaries - but the dimensionality is extremely high. This makes our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the much higher dimensional space, without ever computing a single vector $\phi(\mathbf{x})$ or ever computing the full vector \mathbf{w} . It is a little magical.

It is based on the following observation: If we use gradient descent with any one of our standard <u>loss functions</u>, the gradient is a linear combination of the input samples. For example, let us take a look at the squared loss:

$$\ell(\mathbf{w}) = \sum_{i=1}^n (\mathbf{w}^ op \mathbf{x}_i - y_i)^2$$

The gradient descent rule, with step-size/learning-rate s > 0 (we denoted this as $\alpha > 0$ in our <u>previous lectures</u>), updates **w** over time,

$$w_{t+1} \leftarrow w_t - s(rac{\partial \ell}{\partial \mathbf{w}}) \; ext{ where: } rac{\partial \ell}{\partial \mathbf{w}} = \sum_{i=1}^n rac{2(\mathbf{w}^ op \mathbf{x}_i - y_i)}{\gamma_i : ext{function of } \mathbf{x}_i, y_i} \mathbf{x}_i = \sum_{i=1}^n \gamma_i \mathbf{x}_i$$

We will now show that we can express \mathbf{w} as a linear combination of all input vectors,

$$\mathbf{w} = \sum_{i=1}^n lpha_i \mathbf{x}_i.$$

Since the loss is convex, the final solution is independent of the initialization, and we can initialize \mathbf{w}^0 to be whatever we want. For convenience, let us pick

 $\mathbf{w}_0 = \begin{pmatrix} \mathbf{v} \\ \vdots \\ \mathbf{0} \end{pmatrix}$. For this initial choice of \mathbf{w}_0 , the linear combination in

 $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$ is trivially $\alpha_1 = \cdots = \alpha_n = 0$. We now show that throughout the entire gradient descent optimization such coefficients $\alpha_1, \ldots, \alpha_n$ must always exist, as we can re-write the gradient updates entirely in terms of updating the α_i coefficients:

$\mathbf{w}_1 = \mathbf{w}_0 - s \sum_{i=1}^n 2(\mathbf{w}_0^\top \mathbf{x}_i - y_i)\mathbf{x}_i = \sum_{i=1}^n \alpha_i^0 \mathbf{x}_i - s \sum_{i=1}^n \gamma_i^0 \mathbf{x}_i = \sum_{i=1}^n \alpha_i^1 \mathbf{x}_i$	$(\text{with }\alpha_i^1=\alpha_i^0-s\gamma_i^0)$
$\mathbf{w}_2 = \mathbf{w}_1 - s \sum_{i=1}^n 2(\mathbf{w}_1^\top \mathbf{x}_i - y_i)\mathbf{x}_i = \sum_{i=1}^n \alpha_i^{\dagger} \mathbf{x}_i - s \sum_{i=1}^n \gamma_i^{\dagger} \mathbf{x}_i = \sum_{i=1}^n \alpha_i^2 \mathbf{x}_i$	$(\text{with} \alpha_i^2 = \alpha_i^1 \mathbf{x}_i - s \gamma_i^1)$
$\mathbf{w}_{3} = \mathbf{w}_{2} - s \sum_{i=1}^{-n} 2(\mathbf{w}_{2}^{\top} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} = \sum_{i=1}^{-n} \alpha_{i}^{2} \mathbf{x}_{i} - s \sum_{i=1}^{-n} \gamma_{i}^{2} \mathbf{x}_{i} = \sum_{i=1}^{-n} \alpha_{i}^{2} \mathbf{x}_{i}$	$(\text{with }\alpha_i^3=\alpha_i^2-s\gamma_i^2)$
$\mathbf{w}_{t} - \mathbf{w}_{t-1} - s \sum_{i=1}^{n} 2(\mathbf{w}_{t-1}^{\top} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{t-1} \mathbf{x}_{i} - s \sum_{i=1}^{n} \gamma_{i}^{t-1} \mathbf{x}_{i} = \sum_{i=1}^{n} \alpha_{i}^{t} \mathbf{x}_{i}$	$(\text{with } \alpha_i^t - \alpha_i^{t-1} - s\gamma_i^{t-1})$

Formally, the argument is by induction. **w** is trivially a linear combination of our training vectors for \mathbf{w}_0 (base case). If we apply the inductive hypothesis for \mathbf{w}_t it follows for \mathbf{w}_{t+1} .

The update-rule for α_i^t is thus

$$lpha_i^t = lpha_i^{t-1} - s \gamma_i^{t-1}, ext{ and we have } lpha_i^t = -s \sum_{r=0}^{t-1} \gamma_i^r.$$

In other words, we can perform the entire gradient descent update rule without ever expressing \mathbf{w} explicitly. We just keep track of the *n* coefficients $\alpha_1, \ldots, \alpha_n$. Now that \mathbf{w} can be written as a linear combination of the training set, we can also express the inner-product of \mathbf{w} with any input \mathbf{x}_i purely in terms of inner-products between training inputs:

$$\mathbf{w}^ op \mathbf{x}_j = \sum_{i=1}^n lpha_i \mathbf{x}_i^ op \mathbf{x}_j.$$

Consequently, we can also re-write the squared-loss from $\ell(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_{i} - y_{i})^{2}$ entirely in terms of inner-product between training inputs:

$$\ell(lpha) = \sum_{i=1}^n \left(\sum_{j=1}^n lpha_j \mathbf{x}_j^ op \mathbf{x}_i - y_i
ight)^2$$

During test-time we also only need these coefficients to make a prediction on a test-input x_t , and can write the entire classifier in terms of inner-products between the test point and training points:

$$h(\mathbf{x}_t) = \mathbf{w}^ op \mathbf{x}_t = \sum_{j=1}^n lpha_j \mathbf{x}_j^ op \mathbf{x}_t.$$

Do you notice a theme? The only information we ever need in order to learn a hyper-plane classifier with the squared-loss is inner-products between all pairs of data vectors.

Inner-Product Computation

Let's go back to the previous example,
$$\phi(\mathbf{x}) = egin{pmatrix} 1 & & & \\ x_1 & & & \\ \vdots & & & \\ x_d & & & \\ x_1x_2 & & & \\ \vdots & & & \\ x_{d-1}x_d & & & \\ \vdots & & & \\ x_1x_2\cdots x_d \end{pmatrix}.$$

The inner product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ can be formulated as:

$$\phi(\mathbf{x})^ op \phi(\mathbf{z}) = 1 \cdot 1 + x_1 z_1 + x_2 z_2 + \dots + x_1 x_2 z_1 z_2 + \dots + x_1 \cdots x_d z_1 \cdots z_d = \prod_{k=1}^d (1 + x_1 z_k + x_2 z_k + \dots + x_1 z_k + z_k z_k)$$

The sum of 2^d terms becomes the product of d terms. We can compute the innerproduct from the above formula in time O(d) instead of $O(2^d)$! We define the function

$$\underbrace{\mathsf{k}(\mathbf{x}_i,\mathbf{x}_j)}_{\text{this is called the kernel function}} = \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j).$$

With a finite training set of *n* samples, inner products are often pre-computed and stored in a Kernel Matrix:

$$\mathsf{K}_{ij} = \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j).$$

If we store the matrix K, we only need to do simple inner-product look-ups and low-dimensional computations throughout the gradient descent algorithm. The final classifier becomes:

$$h(\mathbf{x}_t) = \sum_{j=1}^n lpha_j \mathsf{k}(\mathbf{x}_j, \mathbf{x}_t).$$

During training in the new high dimensional space of $\phi(\mathbf{x})$ we want to compute γ_i through kernels, without ever computing any $\phi(\mathbf{x}_i)$ or even \mathbf{w} . We previously established that $\mathbf{w} = \sum_{j=1}^n \alpha_j \phi(\mathbf{x}_j)$, and $\gamma_i = 2(\mathbf{w}^\top \phi(\mathbf{x}_i) - y_i)$. It follows that $\gamma_i = 2(\sum_{j=1}^n \alpha_j K_{ij}) - y_i)$. The gradient update in iteration t + 1 becomes

$$lpha_i^{t+1} \leftarrow lpha_i^t - 2s(\sum_{j=1}^n lpha_j^t K_{ij}) - y_i).$$

As we have *n* such updates to do, the amount of work per gradient update in the transformed space is $O(n^2)$ --- far better than $O(2^d)$.

General Kernels

Below are some popular kernel functions:

Linear: $K(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$.

(The linear kernel is equivalent to just using a good old linear classifier - but it can be faster to use a kernel matrix if the dimensionality *d* of the data is high.)

Polynomial:
$$K(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x}^{\top} \mathbf{z})^{d}$$
.

Radial Basis Function (RBF) (aka Gaussian Kernel): $K(\mathbf{x}, \mathbf{z}) = e^{\frac{-||\mathbf{x}-\mathbf{z}||^2}{\sigma^2}}$.

The RBF kernel is the most popular Kernel! It is a <u>Universal approximator</u>!! Its corresponding feature vector is infinite dimensional and cannot be computed. However, very effective low dimensional approximations exist (see <u>this paper</u>).

Exponential Kernel:
$$K(\mathbf{x}, \mathbf{z}) = e^{\frac{-\|\mathbf{x}-\mathbf{z}\|}{2\sigma^2}}$$

Laplacian Kernel: $K(\mathbf{x}, \mathbf{z}) = e^{\frac{-|\mathbf{x}-\mathbf{z}|}{\sigma}}$

Sigmoid Kernel: $K(\mathbf{x}, \mathbf{z}) = \tanh(\mathbf{a}\mathbf{x}^{\top} + c)$

Kernel functions

Can any function $\mathsf{K}(\cdot,\cdot) \to \mathcal{R}$ be used as a kernel?

No, the matrix $\mathsf{K}(\mathbf{x}_i, \mathbf{x}_j)$ has to correspond to real inner-products after some transformation $\mathbf{x} \to \phi(\mathbf{x})$. This is the case if and only if K is *positive semi-definite*.

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite iff $\forall \mathbf{q} \in \mathbb{R}^n, \mathbf{q}^\top A \mathbf{q} \ge 0$

Remember $\mathsf{K}_{ij} = \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j)$. So $\mathsf{K} = \Phi^\top \Phi$, where $\Phi = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)]$. It follows that K is p.s.d., because $\mathbf{q}^\top \mathsf{K} \mathbf{q} = (\Phi^\top \mathbf{q})^2 \ge 0$. Inversely, if any matrix \mathbf{A} is p.s.d., it can be decomposed as $A = \Phi^\top \Phi$ for some realization of Φ .

You can even define kernels over sets, strings, graphs and molecules.

Figure 1: The demo shows how kernel function solves the problem linear classifiers can not solve. RBF works well with the decision boundary in this case.