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Kernels
Cornell CS 4/5780 (Spring 2023)

Linear classifiers are great, but what if there exists no linear decision boundary?
As it turns out, there is an elegant way to incorporate non-linearities into most
linear classifiers.

Handcrafted Feature Expansion

We can make linear classifiers non-linear by applying basis function (feature
transformations) on the input feature vectors. Formally, for a data vector ,
we apply the transformation  where . Usually 
because we add dimensions that capture non-linear interactions among the
original features.

Advantage: It is simple, and your problem stays convex and well behaved. (i.e.
you can still use your original gradient descent code, just with the higher
dimensional representation)

Disadvantage:  might be very high dimensional.

Consider the following example: , and define .

Quiz: What is the dimensionality of ?

This new representation, , is very expressive and allows for complicated non-
linear decision boundaries - but the dimensionality is extremely high. This makes
our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the
much higher dimensional space, without ever computing a single vector  or
ever computing the full vector . It is a little magical.

It is based on the following observation: If we use gradient descent with any one
of our standard loss functions, the gradient is a linear combination of the input
samples. For example, let us take a look at the squared loss:
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The gradient descent rule, with step-size/learning-rate  (we denoted this as
 in our previous lectures), updates  over time,

We will now show that we can express  as a linear combination of all input
vectors,

Since the loss is convex, the final solution is independent of the initialization, and
we can initialize  to be whatever we want. For convenience, let us pick

. For this initial choice of , the linear combination in

 is trivially . We now show that throughout
the entire gradient descent optimization such coefficients  must always
exist, as we can re-write the gradient updates entirely in terms of updating the 
coefficients:

Formally, the argument is by induction.  is trivially a linear combination of our
training vectors for  (base case). If we apply the inductive hypothesis for  it
follows for .

The update-rule for  is thus

In other words, we can perform the entire gradient descent update rule without
ever expressing  explicitly. We just keep track of the  coefficients .
Now that  can be written as a linear combination of the training set, we can also
express the inner-product of  with any input  purely in terms of inner-
products between training inputs:

Consequently, we can also re-write the squared-loss from
 entirely in terms of inner-product between training

inputs:

During test-time we also only need these coefficients to make a prediction on a
test-input , and can write the entire classifier in terms of inner-products
between the test point and training points:

Do you notice a theme? The only information we ever need in order to learn a
hyper-plane classifier with the squared-loss is inner-products between all pairs of
data vectors.
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Inner-Product Computation

Let's go back to the previous example, .

The inner product  can be formulated as:

The sum of  terms becomes the product of  terms. We can compute the inner-
product from the above formula in time  instead of ! We define the
function

With a finite training set of  samples, inner products are often pre-computed
and stored in a Kernel Matrix:

If we store the matrix , we only need to do simple inner-product look-ups and
low-dimensional computations throughout the gradient descent algorithm. The
final classifier becomes:

During training in the new high dimensional space of  we want to compute
 through kernels, without ever computing any  or even . We previously

established that , and . It follows that
. The gradient update in iteration  becomes

As we have  such updates to do, the amount of work per gradient update in the
transformed space is  --- far better than .

General Kernels

Below are some popular kernel functions:

Linear: .

(The linear kernel is equivalent to just using a good old linear classifier - but it
can be faster to use a kernel matrix if the dimensionality  of the data is high.)

Polynomial: .

Radial Basis Function (RBF) (aka Gaussian Kernel): .
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The RBF kernel is the most popular Kernel! It is a Universal approximator!! Its
corresponding feature vector is infinite dimensional and cannot be computed.
However, very effective low dimensional approximations exist (see this paper).

Exponential Kernel: 

Laplacian Kernel: 

Sigmoid Kernel: 

Kernel functions

Can any function  be used as a kernel?

No, the matrix  has to correspond to real inner-products after some
transformation . This is the case if and only if  is positive semi-
definite.

Definition: A matrix  is positive semi-definite iff , 
.

Remember . So , where . It
follows that  is p.s.d., because . Inversely, if any matrix 
is p.s.d., it can be decomposed as  for some realization of .

You can even define kernels over sets, strings, graphs and molecules.

Figure 1: The demo shows how kernel function solves the problem linear
classifiers can not solve. RBF works well with the decision boundary in this

case.
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https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf

