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Linear Regression
Cornell CS 4/5780, Spring 2023

Assumptions

Data Assumption: 
Model Assumption:  where

In words, we assume that the data is drawn from a "line"  through the origin
(one can always add a bias / offset through an additional dimension, similar to
the Perceptron). For each data point with features , the label  is drawn from a
Gaussian with mean  and variance . Our task is to estimate the slope 
from the data.

yi ∈ R

yi = w⊤xi + ϵi

ϵi ∼ N(0, σ2)

⇒ yi|xi ∼ N(w⊤xi, σ2) ⇒ P(yi|xi, w) = 1
√2πσ2

e
−

(x⊤
i

w−yi)2

2σ2

w⊤x

xi y

w⊤xi σ2 w
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We are minimizing a loss function, . This particular
loss function is also known as the squared loss. Linear regression is also known as
Ordinary Least Squares (OLS). OLS can be optimized with gradient descent or
Newton's method. The latter leads to a closed-form solution.

Closed Form:  where  and
.

w = argmax
w

P(D|w) Definition of MLE;

= argmax
w

P(y1, x1, . . . , yn, xn|w) Unpacking D;

= argmax
w

n

∏
i=1

P(yi, xi|w) Because data points are independently sampled.

= argmax
w

n

∏
i=1

P(yi|xi, w)P(xi|w) Chain rule of probability.

= argmax
w

n

∏
i=1

P(yi|xi, w)P(xi) xi is independent of w, we only model P(yi|x)

= argmax
w

n

∏
i=1

P(yi|xi, w) P(xi) is a constant - can be dropped

= argmax
w

n

∑
i=1

log [P(yi|xi, w)] log is a monotonic function

= argmax
w

n

∑
i=1

[log(
1

√2πσ2
) + log(e

−
(x⊤

i w−yi)2

2σ2 )] Plugging in probability distribution

= argmax
w

−
1

2σ2

n

∑
i=1

(x⊤
i w − yi)2 First term is a constant, and log(ez) = z

= argmin
w

1

n

n

∑
i=1

(x⊤
i w − yi)

2 Always minimize; 
1

n
 makes loss interpretable (avg. squared error).

l(w) = 1
n
∑n

i=1(x⊤
i w − yi)2

w = (XX⊤)−1Xy⊤ X = [x1, … , xn]

y = [y1, … , yn]
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Estimating with MAP

Additional Model Assumption: 

This objective is known as Ridge Regression. It has a closed form solution of:
 where  and .

Summary

Ordinary Least Squares:

.
Squared loss.
No regularization.
Closed form: .

Ridge Regression:

P(w) = 1
√2πτ 2

e
− w⊤w

2τ 2

w = argmax
w

P(w|y1, x1, . . . , yn, xn)

= argmax
w

P(y1, x1, . . . , yn, xn|w)P(w)

P(y1, x1, . . . , yn, xn)

= argmax
w

P(y1, x1, . . . , yn, xn|w)P(w)

= argmax
w

[
n

∏
i=1

P(yi, xi|w)]P(w)

= argmax
w

[
n

∏
i=1

P(yi|xi, w)P(xi|w)]P(w)

= argmax
w

[
n

∏
i=1

P(yi|xi, w)P(xi)]P(w)

= argmax
w

[
n

∏
i=1

P(yi|xi, w)]P(w)

= argmax
w

n

∑
i=1

log P(yi|xi, w) + log P(w)

= argmin
w

1

2σ2

n

∑
i=1

(x⊤
i w − yi)

2 +
1

2τ 2
w⊤w

= argmin
w

1

n

n

∑
i=1

(x⊤
i w − yi)

2 + λ||w||2
2 where: λ =

σ2

nτ 2

w = (XX⊤ + λI)−1Xy⊤, X = [x1, … , xn] y = [y1, … , yn]

minw
1
n ∑

n
i=1(x⊤

i w − yi)2

w = (XX⊤)−1Xy⊤


