Cornell CS 4/5780

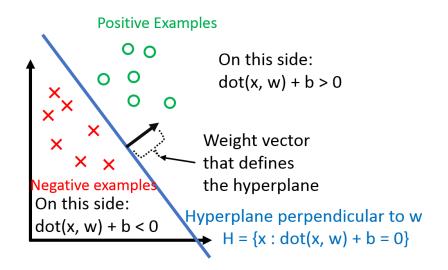
Spring 2023

Assumptions

- 1. Binary classification (i.e. $y_i \in \{-1, +1\}$)
- 2. Data is linearly separable

Classifier

$$h(\mathbf{x}_i) = \operatorname{sign}(\mathbf{w}^ op \mathbf{x}_i + b)$$



b is the bias term (without the bias term, the hyperplane that **w** defines would always have to go through the origin). Dealing with b can be a pain, so we 'absorb' it into the feature vector **w** by adding one additional *constant* dimension. Under this convention,

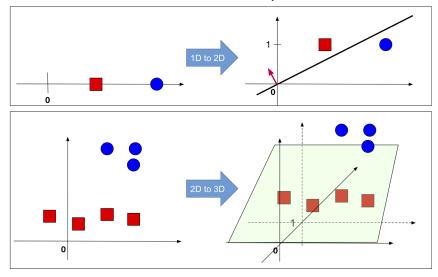
$$\mathbf{x}_i \text{ becomes } \begin{bmatrix} \mathbf{x}_i \\ 1 \end{bmatrix} \mathbf{w} \text{ becomes } \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

We can verify that

$$egin{bmatrix} \mathbf{x}_i \ 1 \end{bmatrix}^ op egin{bmatrix} \mathbf{w} \ b \end{bmatrix} = \mathbf{w}^ op \mathbf{x}_i + b$$

Using this, we can simplify the above formulation of $h(\mathbf{x}_i)$ to

$$h(\mathbf{x}_i) = \mathrm{sign}(\mathbf{w}^ op \mathbf{x})$$



(Left:) The original data is 1-dimensional (top row) or 2-dimensional (bottom row). There is no hyper-plane that passes through the origin and separates the red and blue points. (Right:) After a constant dimension was added to all data points such a hyperplane exists.

Observation: Note that

 $y_i(\mathbf{w}^{ op}\mathbf{x}_i) > 0 \Longleftrightarrow \mathbf{x}_i ext{ is classified correctly }$

where 'classified correctly' means that x_i is on the correct side of the hyperplane defined by **w**. Also, note that the left side depends on $y_i \in \{-1, +1\}$ (it wouldn't work if, for example $y_i \in \{0, +1\}$).

Perceptron Algorithm

Now that we know what the **w** is supposed to do (defining a hyperplane the separates the data), let's look at how we can get such **w**. **Perceptron**

Algorithm

Initialize $\vec{w} = \vec{0}$ while TRUE do m = 0 for $(x_i, y_i) \in D$ do if $y_i(\vec{w}^T \cdot \vec{x_i}) \leq 0$ then $\vec{w} \leftarrow \vec{w} + y\vec{x}$ $m \leftarrow m + 1$ end if	// Initialize \vec{w} . $\vec{w} = \vec{0}$ misclassifies everything. // Keep looping // Count the number of misclassifications, m // Loop over each (data, label) pair in the dataset, D // If the pair ($\vec{x_i}, y_i$) is misclassified // Update the weight vector \vec{w} // Counter the number of misclassification
end for if $m = 0$ then break	// If the most recent \vec{w} gave 0 misclassifications // Break out of the while-loop
end if end while	// Otherwise, keep looping!

Geometric Intuition

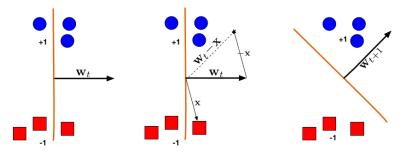


Illustration of a Perceptron update. (Left:) The hyperplane defined by \mathbf{w}_t misclassifies one red (-1) and one blue (+1) point. (Middle:) The red point \mathbf{x} is chosen and used for an update. Because its label is -1 we need to **subtract** \mathbf{x} from \mathbf{w}_t . (Right:) The udpated hyperplane $\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{x}$ separates the two classes and the Perceptron algorithm has converged.

Quiz: Assume a data set consists only of a single data point $\{(\mathbf{x}, +1)\}$. How often can a Perceptron misclassify this point \mathbf{x} repeatedly? What if the initial weight vector \mathbf{w} was initialized randomly and not as the all-zero vector?

Perceptron Convergence

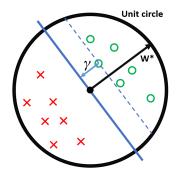
The Perceptron was arguably the first algorithm with a strong formal guarantee. If a data set is linearly separable, the Perceptron will find a separating hyperplane in a finite number of updates. (If the data is not linearly separable, it will loop forever.)

The argument goes as follows: Suppose $\exists \mathbf{w}^*$ such that $y_i(\mathbf{x}^\top \mathbf{w}^*) > 0$ $\forall (\mathbf{x}_i, y_i) \in D$. Now, suppose that we rescale each data point and the \mathbf{w}^* such that

$$||\mathbf{w}^*|| = 1 \quad ext{and} \quad ||\mathbf{x}_i|| \leq 1 \,\, orall \mathbf{x}_i \in D$$

Let us define the <u>Margin γ of the hyperplane</u> \mathbf{w}^* as $\gamma = \min_{(\mathbf{x}_i, y_i) \in D} |\mathbf{x}_i^\top \mathbf{w}^*|$.

A little observation (which will come in very handy): For all \mathbf{x} we must have $y(\mathbf{x}^{\top}\mathbf{w}^*) = |\mathbf{x}^{\top}\mathbf{w}^*| \ge \gamma$. Why? Because \mathbf{w}^* is a perfect classifier, so all training data points (\mathbf{x}, y) lie on the "correct" side of the hyper-plane and therefore $y = sign(\mathbf{x}^{\top}\mathbf{w}^*)$. The second inequality follows directly from the definition of the margin γ .



To summarize our setup:

- All inputs \mathbf{x}_i live within the unit sphere
- There exists a separating hyperplane defined by \mathbf{w}^* , with $\|\mathbf{w}\|^* = 1$ (i.e. \mathbf{w}^* lies exactly on the unit sphere).
- γ is the distance from this hyperplane (blue) to the closest data point.

Theorem: If all of the above holds, then the Perceptron algorithm makes at most $1/\gamma^2$ mistakes. **Proof:**

Keeping what we defined above, consider the effect of an update (**w** becomes $\mathbf{w} + y\mathbf{x}$) on the two terms $\mathbf{w}^{\top}\mathbf{w}^*$ and $\mathbf{w}^{\top}\mathbf{w}$. We will use two facts:

- y(x[⊤]w) ≤ 0: This holds because x is misclassified by w otherwise we wouldn't make the update.
- y(x[⊤]w^{*}) > 0: This holds because w^{*} is a separating hyper-plane and classifies all points correctly.
 - 1. Consider the effect of an update on $\mathbf{w}^{\top}\mathbf{w}^*$:

$$(\mathbf{w} + y\mathbf{x})^{ op}\mathbf{w}^* = \mathbf{w}^{ op}\mathbf{w}^* + y(\mathbf{x}^{ op}\mathbf{w}^*) \geq \mathbf{w}^{ op}\mathbf{w}^* + \gamma$$

The inequality follows from the fact that, for \mathbf{w}^* , the distance from the hyperplane defined by \mathbf{w}^* to \mathbf{x} must be at least γ (i.e.

 $y(\mathbf{x}^{\top}\mathbf{w}^*) = |\mathbf{x}^{\top}\mathbf{w}^*| \ge \gamma$). This means that for each update, $\mathbf{w}^{\top}\mathbf{w}^*$ grows by at least γ .

2. Consider the effect of an update on $\mathbf{w}^{\top}\mathbf{w}$:

$$(\mathbf{w} + y\mathbf{x})^{ op}(\mathbf{w} + y\mathbf{x}) = \mathbf{w}^{ op}\mathbf{w} + \underbrace{2y(\mathbf{w}^{ op}\mathbf{x})}_{<0} + \underbrace{y^2(\mathbf{x}^{ op}\mathbf{x})}_{0\leq \ \leq 1} \leq \mathbf{w}^{ op}\mathbf{w} + 1$$

The inequality follows from the fact that

- 2y(**w**[⊤]**x**) < 0 as we had to make an update, meaning **x** was misclassified
- $0 \le y^2(\mathbf{x}^{\top}\mathbf{x}) \le 1$ as $y^2 = 1$ and all $\mathbf{x}^{\top}\mathbf{x} \le 1$ (because $\|\mathbf{x}\| \le 1$).

This means that for each update, $\mathbf{w}^{\top}\mathbf{w}$ grows by **at most** 1.

- 3. Now remember from the Perceptron algorithm that we initialize $\mathbf{w} = \mathbf{0}$. Hence, initially $\mathbf{w}^{\top}\mathbf{w} = 0$ and $\mathbf{w}^{\top}\mathbf{w}^* = 0$ and after M updates the following two inequalities must hold:
 - (1) $\mathbf{w}^{ op}\mathbf{w}^* \geq M\gamma$

(2)
$$\mathbf{w}^{\top}\mathbf{w} \leq M$$
.

We can then complete the proof:

$$\begin{split} & M\gamma \leq \mathbf{w}^{\top} \mathbf{w}^{*} & \text{By (1)} \\ & = \|\mathbf{w}\| \cos(\theta) & \text{by definition of inner-product, where θ is the angle between \mathbf{w} and} \\ & \leq ||\mathbf{w}|| & \text{by definition of \cos, we must have $\cos(\theta) \leq 1$.} \\ & = \sqrt{\mathbf{w}^{\top} \mathbf{w}} & \text{by definition of $\|\mathbf{w}\|$} \\ & \leq \sqrt{M} & \text{By (2)} \\ & \Rightarrow M\gamma \leq \sqrt{M} \\ & \Rightarrow M^{2}\gamma^{2} \leq M \\ & \Rightarrow M \leq \frac{1}{\gamma^{2}} & \text{And hence, the number of updates M is bounded from above by a } \end{split}$$

Quiz: Given the theorem above, what can you say about the margin of a classifier (what is more desirable, a large margin or a small margin?) Can you characterize data sets for which the Perceptron algorithm will converge quickly? Draw an example.

History

- Initially, huge wave of excitement ("Digital brains") (See <u>The New Yorker December 1958</u>)
- Then, contributed to the A.I. Winter. Famous example of a simple non-linearly separable data set, the XOR problem (Minsky 1969):

