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Spring 2023

Assumptions

1. Binary classification (i.e. )
2. Data is linearly separable

Classifier

 is the bias term (without the bias term, the hyperplane that  defines would
always have to go through the origin). Dealing with  can be a pain, so we 'absorb'
it into the feature vector  by adding one additional constant dimension. Under
this convention,

We can verify that

Using this, we can simplify the above formulation of  to
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(Left:) The original data is 1-dimensional (top row) or 2-dimensional (bottom
row). There is no hyper-plane that passes through the origin and separates

the red and blue points. (Right:) After a constant dimension was added to all
data points such a hyperplane exists.

Observation: Note that

where 'classified correctly' means that  is on the correct side of the hyperplane
defined by . Also, note that the left side depends on  (it wouldn't
work if, for example ).

Perceptron Algorithm

Now that we know what the  is supposed to do (defining a hyperplane the
separates the data), let's look at how we can get such . Perceptron
Algorithm

Geometric Intuition
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Illustration of a Perceptron update. (Left:) The hyperplane defined by 
misclassifies one red (-1) and one blue (+1) point. (Middle:) The red point  is
chosen and used for an update. Because its label is -1 we need to subtract 
from . (Right:) The udpated hyperplane  separates the two

classes and the Perceptron algorithm has converged.

Quiz: Assume a data set consists only of a single data point . How often
can a Perceptron misclassify this point  repeatedly? What if the initial weight
vector  was initialized randomly and not as the all-zero vector?

Perceptron Convergence

The Perceptron was arguably the first algorithm with a strong formal guarantee.
If a data set is linearly separable, the Perceptron will find a separating hyperplane
in a finite number of updates. (If the data is not linearly separable, it will loop
forever.)

The argument goes as follows: Suppose  such that 
. Now, suppose that we rescale each data point and the  such

that

Let us define the Margin  of the hyperplane  as .

A little observation (which will come in very handy): For all  we must have
. Why? Because  is a perfect classifier, so all training

data points  lie on the "correct" side of the hyper-plane and therefore
. The second inequality follows directly from the definition of

the margin .

To summarize our setup:
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All inputs  live within the unit sphere
There exists a separating hyperplane defined by , with  (i.e. 
lies exactly on the unit sphere).

 is the distance from this hyperplane (blue) to the closest data point.

Theorem: If all of the above holds, then the Perceptron algorithm makes at
most  mistakes. Proof:
Keeping what we defined above, consider the effect of an update (  becomes

) on the two terms  and . We will use two facts:

: This holds because  is misclassified by  - otherwise we
wouldn't make the update.

: This holds because  is a separating hyper-plane and
classifies all points correctly.

1. Consider the effect of an update on :

The inequality follows from the fact that, for , the distance from the
hyperplane defined by  to  must be at least  (i.e.

). This means that for each update,  grows
by at least .

2. Consider the effect of an update on :

The inequality follows from the fact that
 as we had to make an update, meaning  was

misclassified
 as  and all  (because ).

This means that for each update,  grows by at most 1.
3. Now remember from the Perceptron algorithm that we initialize .

Hence, initially  and  and after  updates the
following two inequalities must hold:

(1) 
(2) .

We can then complete the proof:
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And hence, the number of updates M  is bounded from above by a c
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Quiz: Given the theorem above, what can you say about the margin of a
classifier (what is more desirable, a large margin or a small margin?) Can you
characterize data sets for which the Perceptron algorithm will converge
quickly? Draw an example.

History

Initially, huge wave of excitement ("Digital brains")
(See The New Yorker December 1958)
Then, contributed to the A.I. Winter. Famous
example of a simple non-linearly separable data set,
the XOR problem (Minsky 1969):

http://archives.newyorker.com/?i=1958-12-06#folio=044

