Kernels Continued Cornell CS 4/5780 Spring 2023

Instructor

April 11, 2023

In		

∃ →

- Prove that the solution lies in the span of the training points (i.e. $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i$ for some α_i)
- Rewrite the algorithm and the classifier so that all training or testing inputs x_i are only accessed in inner-products with other inputs, e.g. x_i^Tx_j
- **③** Define a kernel function and substitute $k(\mathbf{x}_i, \mathbf{x}_j)$ for $\mathbf{x}_i^\top \mathbf{x}_j$

Any positive semi-definite matrix is a well-defined kernel.

Definition: Positive Semi-Definite Matrices

A kernel matrix is positive-semidefinite is equivalent to any of the following statements:

- All eigenvalues of K are non-negative.
- **2** There exists a real matrix P such that $K = P^{\top}P$.
- **③** For all real vectors \mathbf{x} , $\mathbf{x}^{\top} K \mathbf{x} \ge 0$.

Common kernels:

• Linear: $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^\top \mathbf{z}$

• RBF:
$$k(\mathbf{x}, \mathbf{z}) = e^{-\frac{(\mathbf{x}-\mathbf{z})^2}{\sigma^2}}$$

• Polynomial: $k(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x}^{\top} \mathbf{z})^d$

3/13

We can construct new kernels by recursively combining one or more rules from the following list:

•
$$k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$$

• $k(\mathbf{x}, \mathbf{z}) = ck_1(\mathbf{x}, \mathbf{z})$
• $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) + k_2(\mathbf{x}, \mathbf{z})$
• $k(\mathbf{x}, \mathbf{z}) = g(k(\mathbf{x}, \mathbf{z}))$
• $k(\mathbf{x}, \mathbf{z}) = g(k(\mathbf{x}, \mathbf{z}))$
• $k(\mathbf{x}, \mathbf{z}) = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{z})f(\mathbf{z})$
• $k(\mathbf{x}, \mathbf{z}) = e^{k_1(\mathbf{x}, \mathbf{z})}$
• $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{z}$

where $c \ge 0$ and g() is a polynomial with positive coefficients.

Quiz 1

Prove that the RBF kernel $k(\mathbf{x}, \mathbf{z}) = e^{\frac{-(\mathbf{x}-\mathbf{z})^2}{\sigma^2}}$ is a well-defined kernel matrix.

Quiz 2

Prove that the following kernel, defined on any two sets $S_1, S_2 \subseteq \Omega$, is well-defined: $k(S_1, S_2) = e^{|S_1 \cap S_2|}$.

Recap: Vanilla OLS regression minimizes the following squared loss regression loss function:

$$\min_{\mathbf{w}}\sum_{i=1}^{n}(\mathbf{w}^{\top}\mathbf{x}_{i}-y_{i})^{2},$$

to find the hyper-plane \mathbf{w} . The prediction at a test-point is simply $h(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$. If we let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ and $\mathbf{y} = [y_1, \dots, y_n]^{\top}$, the solution of OLS can be written in closed form:

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^{ op})^{-1}\mathbf{X}\mathbf{y}$$

Instructor

To kernelize the algorithm, we express the solution \mathbf{w} as a linear combination of the training inputs:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i = \mathbf{X} \vec{\alpha}.$$

During testing, a test point is only accessed through inner-products with training inputs:

$$h(\mathbf{z}) = \mathbf{w}^{\top} \mathbf{z} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i^{\top} \mathbf{z}.$$

We can now immediately kernelize the algorithm by substituting $k(\mathbf{x}_i, \mathbf{z})$ for any inner-product $\mathbf{x}_i^{\top} \mathbf{z}$.

Kernelized Linear Regression

Derivation for Kernelized Ordinary Least Squares

<u>Theorem</u>

Kernelized ordinary least squares has the solution $\vec{\alpha} = \mathbf{K}^{-1} \mathbf{y}$.

Proof.

$$\mathbf{X}\vec{\alpha} = \mathbf{w} = (\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
$$(\mathbf{X}^{\top}\mathbf{X}\mathbf{X}^{\top})\mathbf{X}\vec{\alpha} = (\mathbf{X}^{\top}\mathbf{X}\mathbf{X}^{\top})(\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
$$(\mathbf{X}^{\top}\mathbf{X})(\mathbf{X}^{\top}\mathbf{X})\vec{\alpha} = \mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top})(\mathbf{X}\mathbf{X}^{\top})^{-1}\mathbf{X}\mathbf{y}$$
$$\mathbf{K}^{2}\vec{\alpha} = \mathbf{K}\mathbf{y}$$
$$\vec{\alpha} = \mathbf{K}^{-1}\mathbf{y}$$

Kernels Continued

< □ > < 同 >

э

8/13

Kernel SVM

Kernelize your SVMs for more power and fun!

s.

(Original) SVM Primal Form

$$\min_{\substack{\xi_i \ge 0, \mathbf{w}, b}} \mathbf{w}^\top \mathbf{w} + C \sum_{i=1} \xi_i$$

t. $\forall i, \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \xi_i$

SVM Dual Form

$$\min_{\alpha_1, \cdots, \alpha_n} \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K_{ij} - \sum_{i=1}^n \alpha_i$$

s.t. $0 \le \alpha_i \le C$
 $\sum_{i=1}^n \alpha_i y_i = 0$

Where $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \phi(\mathbf{x}_i)$ and the decision function is:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} k(\mathbf{x}_{i}, \mathbf{x}) + b\right).$$

Instructor

Kernels Continued

э

Question: What is the dual form of the hard-margin SVM?

		IC		

Image: Image:

э

- Support vectors: only support vectors satisfy the constraint with equality: y_i(**w**^Tφ(x_i) + b) = 1. In the dual, these are the training inputs with α_i > 0.
- Recovering *b*: we can solve for *b* from the support vectors using:

$$y_i(\mathbf{w}^{\top}\phi(\mathbf{x}_i) + b) = 1$$
$$y_i\left(\sum_j y_j \alpha_j k(\mathbf{x}_j, \mathbf{x}_i) + b\right) = 1$$
$$\sum_j y_j \alpha_j k(\mathbf{x}_j, \mathbf{x}_i) + b = y_i$$
$$y_i - \sum_j y_j \alpha_j k(\mathbf{x}_j, \mathbf{x}_i) = b$$

Kernel SVM - The Smart Nearest Neighbor

Because who wants a dumb nearest neighbor?

KNN for binary classification problems

$$h(\mathbf{z}) = \operatorname{sign}\left(\sum_{i=1}^{n} y_i \delta^{nn}(\mathbf{x}_i, \mathbf{z})\right),$$

where $\delta^{nn}(\mathbf{z}, \mathbf{x}_i) \in \{0, 1\}$ with $\delta^{nn}(\mathbf{z}, \mathbf{x}_i) = 1$ only if \mathbf{x}_i is one of the k nearest neighbors of test point \mathbf{z} .

SVM decision function

$$h(\mathbf{z}) = \operatorname{sign}\left(\sum_{i=1}^{n} y_i \alpha_i k(\mathbf{x}_i, \mathbf{z}) + b\right)$$

Kernel SVM is like a smart nearest neighbor: it considers *all* training points but kernel function assigns more weight to closer points. It also learns a weight $\alpha_i > 0$ for each training point and a bias *b*, and sets many $\alpha_i = 0$ for useless training points.

	uc	

That's all folks! Have a great day and keep kernelizing!

ns			

Image: Image: