Kernels Continued

Cornell CS 4/5780 Spring 2023

Instructor

April 11, 2023

Kernel Machines

(1) Prove that the solution lies in the span of the training points (i.e. $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$ for some α_{i})
(2) Rewrite the algorithm and the classifier so that all training or testing inputs \mathbf{x}_{i} are only accessed in inner-products with other inputs, e.g. $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$
(3) Define a kernel function and substitute $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ for $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$

Well-defined Kernels

Wanna kernel? Gotta make sure it's well-defined!

Any positive semi-definite matrix is a well-defined kernel.

Definition: Positive Semi-Definite Matrices

A kernel matrix is positive-semidefinite is equivalent to any of the following statements:
(1) All eigenvalues of K are non-negative.
(2) There exists a real matrix P such that $K=P^{\top} P$.
(3) For all real vectors $\mathbf{x}, \mathbf{x}^{\top} K \mathbf{x} \geq 0$.

Common kernels:

- Linear: $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z}$
- RBF: $k(\mathbf{x}, \mathbf{z})=e^{-\frac{(\mathbf{x}-\mathrm{z})^{2}}{\sigma^{2}}}$
- Polynomial: $k(\mathbf{x}, \mathbf{z})=\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{d}$

Positive Semidefinite Kernel Matrices

Who said positive is always a good thing? Just kidding, it is!

We can construct new kernels by recursively combining one or more rules from the following list:
(1) $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z}$
(2) $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z})$
(3) $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$
(4) $k(\mathbf{x}, \mathbf{z})=g(k(\mathbf{x}, \mathbf{z}))$
(3) $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) k_{2}(\mathbf{x}, \mathbf{z})$
(0) $k(\mathbf{x}, \mathbf{z})=f(\mathbf{x}) k_{1}(\mathbf{x}, \mathbf{z}) f(\mathbf{z})$
(1) $k(\mathbf{x}, \mathbf{z})=e^{k_{1}(\mathbf{x}, \mathbf{z})}$
(3) $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{A} \mathbf{z}$
where $c \geq 0$ and $g()$ is a polynomial with positive coefficients.

Quiz Time!

Time to put your thinking caps on!

Quiz 1

Prove that the RBF kernel $k(\mathbf{x}, \mathbf{z})=e^{\frac{-(\mathbf{x}-\mathbf{z})^{2}}{\sigma^{2}}}$ is a well-defined kernel matrix.

Quiz 2

Prove that the following kernel, defined on any two sets $S_{1}, S_{2} \subseteq \Omega$, is well-defined: $k\left(S_{1}, S_{2}\right)=e^{\left|S_{1} \cap S_{2}\right|}$.

Kernelized Linear Regression

Kernelize all the things!

Recap: Vanilla OLS regression minimizes the following squared loss regression loss function:

$$
\min _{w} \sum_{i=1}^{n}\left(\mathbf{w}^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}
$$

to find the hyper-plane \mathbf{w}. The prediction at a test-point is simply $h(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}$.
If we let $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]$ and $\mathbf{y}=\left[y_{1}, \ldots, y_{n}\right]^{\top}$, the solution of OLS can be written in closed form:

$$
\mathbf{w}=\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \mathbf{y}
$$

Kernelized Linear Regression

Kernelization: Unleash the power of kernels!

To kernelize the algorithm, we express the solution \mathbf{w} as a linear combination of the training inputs:

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}=\mathbf{X} \vec{\alpha} .
$$

During testing, a test point is only accessed through inner-products with training inputs:

$$
h(\mathbf{z})=\mathbf{w}^{\top} \mathbf{z}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}^{\top} \mathbf{z}
$$

We can now immediately kernelize the algorithm by substituting $k\left(\mathbf{x}_{i}, \mathbf{z}\right)$ for any inner-product $\mathbf{x}_{i}^{\top} \mathbf{z}$.

Kernelized Linear Regression

Derivation for Kernelized Ordinary Least Squares

Theorem

Kernelized ordinary least squares has the solution $\vec{\alpha}=\mathbf{K}^{-1} \mathbf{y}$.

Proof.

$$
\begin{aligned}
\mathbf{X} \vec{\alpha} & =\mathbf{w}=\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \mathbf{y} \\
\left(\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}\right) \mathbf{X} \vec{\alpha} & =\left(\mathbf{X}^{\top} \mathbf{X} \mathbf{X}^{\top}\right)\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \mathbf{y} \\
\left(\mathbf{X}^{\top} \mathbf{X}\right)\left(\mathbf{X}^{\top} \mathbf{X}\right) \vec{\alpha} & =\mathbf{X}^{\top}\left(\mathbf{X} \mathbf{X}^{\top}\right)\left(\mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X} \mathbf{y} \\
\mathbf{K}^{2} \vec{\alpha} & =\mathbf{K} \mathbf{y} \\
\vec{\alpha} & =\mathbf{K}^{-1} \mathbf{y}
\end{aligned}
$$

Kernel SVM

Kernelize your SVMs for more power and fun!

(Original) SVM Primal Form

$$
\min _{\xi_{i} \geq 0, \mathbf{w}, b} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i}
$$

$$
\text { s.t. } \forall i, \quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}
$$

SVM Dual Form

$$
\min _{\alpha_{1}, \cdots, \alpha_{n}} \frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{i j}-\sum_{i=1}^{n} \alpha_{i}
$$

$$
\text { s.t. } \quad 0 \leq \alpha_{i} \leq C
$$

$$
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

Where $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)$ and the decision function is:

$$
h(\mathbf{x})=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b\right)
$$

Quiz

Test your knowledge with this fun quiz!

Question: What is the dual form of the hard-margin SVM?

Kernel SVM

Support Vectors and Recovering b

- Support vectors: only support vectors satisfy the constraint with equality: $y_{i}\left(\mathbf{w}^{\top} \phi\left(x_{i}\right)+b\right)=1$. In the dual, these are the training inputs with $\alpha_{i}>0$.
- Recovering b : we can solve for b from the support vectors using:

$$
\begin{aligned}
y_{i}\left(\mathbf{w}^{\top} \phi\left(x_{i}\right)+b\right) & =1 \\
y_{i}\left(\sum_{j} y_{j} \alpha_{j} k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)+b\right) & =1 \\
\sum_{j} y_{j} \alpha_{j} k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)+b & =y_{i} \\
y_{i}-\sum_{j} y_{j} \alpha_{j} k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right) & =b
\end{aligned}
$$

Kernel SVM - The Smart Nearest Neighbor

Because who wants a dumb nearest neighbor?

KNN for binary classification problems

$$
h(\mathbf{z})=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i} \delta^{n n}\left(\mathbf{x}_{i}, \mathbf{z}\right)\right)
$$

where $\delta^{n n}\left(\mathbf{z}, \mathbf{x}_{i}\right) \in\{0,1\}$ with $\delta^{n n}\left(\mathbf{z}, \mathbf{x}_{i}\right)=1$ only if \mathbf{x}_{i} is one of the k nearest neighbors of test point \mathbf{z}.

SVM decision function

$$
h(\mathbf{z})=\operatorname{sign}\left(\sum_{i=1}^{n} y_{i} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{z}\right)+b\right)
$$

Kernel SVM is like a smart nearest neighbor: it considers all training points but kernel function assigns more weight to closer points. It also learns a weight $\alpha_{i}>0$ for each training point and a bias b, and sets many $\alpha_{i}=0$ for useless training points.

Thank You!

I hope you had as much fun as I did!

That's all folks! Have a great day and keep kernelizing!

