The $k-N N$ classifier

Assumption: Similar points shave similar labels
Classification Rule: For a test input x_{r} assign the most common label among its k most similar training inputs.

Protip: In case of a draw decide by reducing k by 1 , until you reach a unique mode.
Traming Error: Leave-One-Out (LOO) estimate: Take each training point out and estimate its label, pretending it was a test point. (ie. a point cannot be its own neighbor)

What distance function should we use?
Common choice: Minkowki's distance: dist $(x, t)=\left(\sum_{\alpha}[x]_{2}-\left.[t]_{d}\right|^{p}\right)^{p p}$ for $p>0$
special case: $\rho=2 \leftarrow$ Euclidean distance
$p=1 \propto$ Manhattan distance
Quiz: What if $\rho \rightarrow \infty$ or $\rho \rightarrow 0^{+}$?
How does k affect the outcome? How does the classifier behave as $k=1$, or $k=m$?

Bayes Optimal Classifier
Your data D is drawn from some distribution $(x, y) \sim P(x, y)$) $A(s o: P(x, y)=P(y \mid x) P(x)$
Assume you knew $P(y \mid x)$ (you never do, but just for the sake of the argument).
For some test x what label would you predict?
The most likely label: $h_{\text {opt }}(x)=\operatorname{argmax} P(y / x)$
What is the expected error of the BOC? Let $y^{*}=h_{\text {et }}(x) \quad \varepsilon=1-P\left(y^{*} / x\right)$

You can never do better than the BOC!
$\frac{\text { Asymptotic error bound for 1-NN }}{(\text { Cover and Hart 1967) }}$
Quit:l. You have a coin that shows head with probability p.
If you throw it twice, what is the probability 9 that both throws lead to different outcomes?
2. Show that $q \leq 2(1-p)$.

Back to 1-NN. We want to prove that the expected I-NN test error is less than $2 x$ the BOC error, as $n \rightarrow \infty$. (For binary classification.)
Argument: Let x be the test point and \hat{x} be its nearest neighbor.
Chain 1: As $n \rightarrow \infty$, $\operatorname{dist}(x, x) \rightarrow 0 \in i . e$. The nearest neighbor becomes intimitys clove.
CLaim 2: As $\operatorname{dist}(x, \hat{x}) \rightarrow 0, \quad \hat{x} \rightarrow x \in i . e . \operatorname{In}$ fact, the nearest neighbor becomes (see Covert 8 Hart for proof.)

Assume for x_{r} the label y^{*} is most likely. Let $p=P\left(y^{*} \mid r_{r}\right)$
The BOC would predict y^{*}, and be wrong with probability $\varepsilon_{B a}=1-p$. What is the error of $1-N N$ as $n \rightarrow \infty$?
$1-N N$ is wrong it the labels of x and \hat{x} are different.
 Both points x and \hat{x} could take on label y^{2} with prob. p, and not with ($(1-p)$.
Remember Quiz 2.Reyard both points as the same coin tossed twice. They disagree with probability $2 p(1-p) \leq 2(1-p)=2 \varepsilon_{B O C}$

$$
\Rightarrow \varepsilon_{1-N N} \leqslant 2 \varepsilon_{B O C} \text { as } n \rightarrow \infty
$$

Curse of Dimensionality
Assume $x_{i} \in[0,1]^{d}$ (i.e. the dimensional unit hypercube). All data is drawn uniformly at random. Let $k=10$.

Let l be the edge length of the smallest hypercube that contains all k nearest neighbors of a tot point x.

$$
l^{d} \approx \frac{k}{n} \Rightarrow l=\left(\frac{k}{n}\right)^{1 / d}
$$

$\frac{k}{n}$ is the paction that k points tate up.
(because points are unifromly sampled)

This means nearest neighbors are not similar, violating the keN assumption!
How many points would we need for l to be small?
Fix $l=0.1$

$$
l^{d}=\frac{k}{n} \Rightarrow n=k\left(\frac{1}{l}\right)^{d}=k 10^{d} \Subset \text { grows exponentially with } d \text { ! }
$$

Rescue to the curse:
Data can have structure:

- Data can lie on intrinsically low olimensional subspaces or sub-manifoldr.
- Data can be clustered (very non-uniform).

