Support Vector Machine (continue)

Announcements

1. Prelim Conflict form is out and due next Tue

2. P4 is going to be out this afternoon (due after prelim)

SVMs

Goal of SVM: find a hyperplane that (1) separates the data, (2) $\gamma(w, b)$ is maximized

$$\min_{w,b} \|w\|_2^2$$

$$\forall i: y_i(w^{\mathsf{T}}x_i + b) \ge 1$$

$$\min_{w,b} \|w\|_2^2$$

$$\left(\forall i: y_i(w^{\mathsf{T}}x_i+b) \ge 1\right)$$

Not only linearly separable, but also has functional margin no less than 1

Avoids "cheating" (i.e., scale *w*, *b* up by large constant)

$$\left(\forall i: y_i(w^{\top}x_i+b) \ge 1\right)$$

Not only linearly separable, but also has functional margin no less than 1

Avoids "cheating" (i.e., scale w, b up by large constant)

$$\left(\forall i: y_i(w^{\mathsf{T}}x_i+b) \ge 1\right)$$

Not only linearly separable, but also has functional margin no less than 1

Denote (w, b) as the optimal solution:

Q: will there be some (x, y), such that $y(w^{T}x + b) = 1$?

min yi (wixi+b)=C-1

 $w = \frac{w}{c} \quad b = \frac{b}{c}$

Support Vectors

Ŧ

$$\min_{w,b} \|w\|_2^2 + c \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\}$$

$$\min_{w,b} \|w\|_{2}^{2} + c \sum_{i=1}^{n} \max\left\{0, 1 - y_{i}(w^{\top}x_{i} + b)\right\}$$

Hinge loss

Hinge loss starts penalizing when functional margin falls below 1

SVM for non-separable data
$$\min_{w,b} \|w\|_2^2 + \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\top}x_i + b)\right\}$$

Trades off $\|w\|_2^2$ and functional margins over data

SVM for non-separable data
$$\min_{w,b} \|w\|_2^2 + \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\top}x_i + b)\right\}$$

Trades off $\|w\|_2^2$ and functional margins over data

When $c \to +\infty$: forcing $y_i(w^T x_i + b) \ge 1$ for as many data points as possible

SVM for non-separable data
$$\min_{w,b} \|w\|_2^2 + \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\top}x_i + b)\right\}$$

Trades off $\|w\|_2^2$ and functional margins over data

When $c \to +\infty$: forcing $y_i(w^T x_i + b) \ge 1$ for as many data points as possible

When $c \to 0^+$: The solution $w \to \mathbf{0}$ (i.e., we do not care about hinge loss part)

$$\min_{w,b} \|w\|_2^2 + c \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\}$$

$$\min_{w,b} \|w\|_2^2 + c \sum_{i=1}^n \max\left\{0, 1 - y_i(w^\top x_i + b)\right\}$$

$$\min_{w,b} \|w\|_2^2 + c \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\}$$

C = 0.01

$$\min_{w,b} \|w\|_2^2 + c \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\}$$

C = 0.01

SVM for non-separable data $\min_{w,b} \|w\|_2^2 + \sum_{i=1}^n \max\left\{0, 1 - y_i(w^T x_i + b)\right\}$ Trades off $\|w\|_2^2$ and functional margins over data

SVM for non-separable data $\min_{w,b} \|w\|_2^2 + \sum_{i=1}^n \max\left\{0, 1 - y_i(w^T x_i + b)\right\}$ Trades off $\|w\|_2^2$ and functional margins over data

all examples have zero Hinge loss, but *w* has large norm

SVM for non-separable data $\min_{w,b} \|w\|_2^2 + \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\top}x_i + b)\right\}$ Trades off $\|w\|_2^2$ and functional margins over data

all examples have zero Hinge loss, but *w* has large norm

Bad geometric margin but good functional margin (achieved by "cheating")

all examples have zero Hinge loss, but w has large norm

Bad geometric margin but good functional margin (achieved by "cheating")

Potentially overfitting to the noise, not a good classifier in test time maybe

Empirical Risk Minimization

Recall the general supervised learning setting:

Recall the general supervised learning setting:

We have some distribution *P*, dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$

Recall the general supervised learning setting:

We have some distribution *P*, dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$

Each data point is i.i.d sampled from *P*, i.e., $x_i, y_i \sim P$

Recall the general supervised learning setting:

We have some distribution *P*, dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$

Each data point is i.i.d sampled from *P*, i.e., $x_i, y_i \sim P$

Hypothesis
$$h: \mathcal{X} \to \mathcal{Q}$$
, & hypothesis class $\mathcal{H} := \{h\} \subset \mathcal{X} \mapsto \mathbb{R}$
 $\{f_{1}, -1\} \in C[assifath]$
 $\mathcal{R} \in Regression$

Recall the general supervised learning setting:

We have some distribution *P*, dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$

Each data point is i.i.d sampled from P, i.e., $x_i, y_i \sim P$

Hypothesis $h: \mathcal{X} \to \mathbb{R}$, & hypothesis class $\mathcal{H} := \{h\} \subset \mathcal{X} \mapsto \mathbb{R}$

Loss function: $\ell(h(x), y)$ $\tau_{our prediction}$

The ultimate objective function:

 $\arg\min_{h\in\mathscr{H}}\mathbb{E}_{x,y\sim P}\left[\ell(h(x),y)\right]$

The ultimate objective function:

The ultimate objective function:

Instead we have its empirical version

ERM

The ultimate objective function:

Instead we have its empirical version

$$\arg\min_{h\in\mathscr{H}}\frac{1}{n}\sum_{i=1}^{n}\left[\ell(h(x_i), y_i)\right]$$

Empirical risk / Empirical error

$$\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[\ell(h(x_i), y_i) \right]$$

$$\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[\ell(h(x_i), y_i) \right]$$

We often are interested in the true performance of \hat{h}_{ERM} :

The generalization error of ERM solution $\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{\ell}(h(x_i), y_i)]$ We often are interested in the true performance of \hat{h}_{FRM} : $\left(\mathbb{E}_{\mathscr{D}}\right)\left[\mathbb{E}_{x,y\sim P}\mathscr{C}(\hat{h}_{ERM}(x),y)\right]$ hERM is dependent on D

$$\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[\ell(h(x_i), y_i) \right]$$

We often are interested in the true performance of \hat{h}_{ERM} :

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\ell(\hat{h}_{ERM}(x),y)\right]$$

Note \hat{h}_{ERM} is a random quantity as it depends on data \mathscr{D}

$$\hat{h}_{ERM} := \arg\min_{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n} \left[\mathscr{\ell}(h(x_i), y_i) \right]$$

We often are interested in the true performance of \hat{h}_{ERM} :

Training
$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y}, P^{t}(\hat{h}_{ERM}(x), y)\right]$$

Testing

Note \hat{h}_{ERM} is a random quantity as it depends on data \mathscr{D}

e.g., In LR: $\hat{w} = (XX^{\top})^{-1}XY$.

x.J~f

Ideally, we want the true loss of ERM to be small:

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\ell(\hat{h}_{ERM}(x),y)\right] \approx \min_{h\in\mathcal{H}}\mathbb{E}_{x,y\sim P}\ell(h(x),y)$$
performance if ERM

Ideally, we want the true loss of ERM to be small:

$$\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x,y\sim P}\mathscr{E}(\hat{h}_{ERM}(x),y)\right] \approx \min_{h\in\mathscr{H}}\mathbb{E}_{x,y\sim P}\mathscr{E}(h(x),y)$$

The Minimum expected loss we could get if we knew P

Ideally, we want the true loss of ERM to be small:

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\mathcal{E}(\hat{h}_{ERM}(x),y)\right] \approx \min_{h\in\mathcal{H}}\mathbb{E}_{x,y\sim P}\mathcal{E}(h(x),y)$$

The Minimum expected loss we could get if we knew P

However, this may not hold if we are not careful about designing ${\mathscr H}$

P: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red

P: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \to y$

P: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \to y$

Zero one loss $\ell(h(x), y) = \mathbf{1}(h(x) \neq y)$

P: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \to y$

Zero one loss $\ell(h(x), y) = \mathbf{1}(h(x) \neq y)$

Let us consider this solution that memorizes data:

P: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \to y$

Zero one loss $\ell(h(x), y) = \mathbf{1}(h(x) \neq y)$

Let us consider this solution that memorizes data:

$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

P: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red

$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

$$\implies \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0$$

P: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red

$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

$$\implies \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0$$

Q: But what's the true expected error of this \hat{h} ?

P: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red

$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

$$\implies \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0$$

Q: But what's the true expected error of this \hat{h} ?

A: area of smaller box / total area

ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$\hat{h}_{ERM} := \arg\min_{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n} \left[\mathscr{\ell}(h(x_i), y_i) \right]$$

ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$\hat{h}_{ERM} := \arg\min_{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n} \left[\ell(h(x_i), y_i) \right]$$

By restricting to \mathcal{H} , we bias towards solutions from \mathcal{H}

P: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

P: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

P: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x,y\sim P}\mathscr{C}(\hat{h}_{ERM}(x),y)\right]$$

 $\leq \min_{h \in \mathcal{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y) + O(1/\sqrt{n})$

P: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$\Xi_{\mathscr{D}}\left[\mathbb{E}_{x,y\sim P}\mathscr{C}(\hat{h}_{ERM}(x),y)\right]$$

 $\leq O(1/\sqrt{n})$

$$\leq \min_{h \in \mathcal{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y) + O(1/\sqrt{n})$$

(Exact proof out of the scope of this class - see CS 4783/5783)

Summary

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict ${\mathcal H}$

After Prelim

We will continue from ERM:

Examples of loss functions, ways to restrict the hypothesis classes, why that really matters in ML (theory and practice)