Support Vector Machine (continue)

Announcements

1. Prelim Conflict form is out and due next Tue
2. P4 is going to be out this afternoon (due after prelim)

SVMs

Goal of SVM: find a hyperplane that
(1) separates the data, (2) $\gamma(w, b)$ is maximized

The SVM algorithm

$$
\begin{gathered}
\min _{w, b}\|w\|_{2}^{2} \\
\forall i: y_{i}\left(w^{\top} x_{i}+b\right) \geq 1
\end{gathered}
$$

The SVM algorithm

$$
\frac{\min _{w, b}\|w\|_{2}^{2}}{\forall i: y_{i}\left(w^{\top} x_{i}+b\right) \geq 1}
$$

Not only linearly separable, but also has functional margin no less than 1

The SVM algorithm

Avoids "cheating" (i.e., scale w, b up by large constant)

$$
\frac{\min _{w, b}\|w\|_{2}^{2}}{\forall i: y_{i}\left(w^{\top} x_{i}+b\right) \geq 1}
$$

Not only linearly separable, but also has functional margin no less than 1

The SVM algorithm

Avoids "cheating" (ie., scale w, b up by large constant)

$$
\min _{w, b}\|w\|_{2}^{2}
$$

$\forall i: y_{i}\left(w^{\top} x_{i}+b\right) \geq 1$
Not only linearly separable, but also has functional margin no less than 1

Denote (w, b) as the optimal solution:

Q: will there be some (x, y), such that

$$
y\left(w^{\top} x+b\right)=1 ?
$$

$$
\begin{aligned}
& \min _{i} y_{i}\left(w^{\top} x_{i}+b\right)=c>1 \\
& w^{\prime}=\frac{w^{\prime}}{c} \quad b^{\prime}=\frac{b}{c}
\end{aligned}
$$

Support Vectors
Points x_{i} such that $y_{i}\left(w^{\top} x_{i}+b\right)=1$ are called support vectors

SVM for non-separable data

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}
$$

SVM for non-separable data

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \underbrace{\max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}}_{\text {Hinge loss }}
$$

SVM for non-separable data

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \underbrace{\max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}}_{\text {Hinge loss }}
$$

SVM for non-separable data

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \underbrace{\max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}}_{\text {Hinge loss }}
$$

Hinge loss starts penalizing when functional margin falls below 1

SVM for non-separable data

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\} \\
& \text { Trades off }\|w\|_{2}^{2} \text { and functional margins over data }
\end{aligned}
$$

SVM for non-separable data

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\} \\
& \text { Trades off }\|w\|_{2}^{2} \text { and functional margins over data }
\end{aligned}
$$

$$
\begin{gathered}
\text { When } c \rightarrow+\infty \text { : } \\
\text { forcing } y_{i}\left(w^{\top} x_{i}+b\right) \geq 1 \text { for as many data points as possible }
\end{gathered}
$$

SVM for non-separable data

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\} \\
& \text { Trades off }\|w\|_{2}^{2} \text { and functional margins over data }
\end{aligned}
$$

$$
\begin{gathered}
\text { When } c \rightarrow+\infty \text { : } \\
\text { forcing } y_{i}\left(w^{\top} x_{i}+b\right) \geq 1 \text { for as many data points as possible }
\end{gathered}
$$

When $c \rightarrow 0^{+}$:
The solution $w \rightarrow \mathbf{0}$ (i.e., we do not care about hinge loss part)

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}
$$

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}
$$

$\mathrm{C}=0.01$

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}
$$

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}
$$

$$
C=0.01
$$

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}
$$

$$
C=0.01
$$

$$
\mathrm{C}=0.01
$$

$$
C=0.1
$$

SVM for non-separable data

$$
\min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\}
$$

Trades off $\|w\|_{2}^{2}$ and functional margins over data

SVM for non-separable data

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\} \\
& \text { Trades off }\|w\|_{2}^{2} \text { and functional margins over data }
\end{aligned}
$$

all examples have zero Hinge loss, but w has large norm

SVM for non-separable data

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\} \\
& \text { Trades off }\|w\|_{2}^{2} \text { and functional margins over data }
\end{aligned}
$$

all examples have zero Hinge loss, but w has large norm

Bad geometric margin but good functional margin (achieved by "cheating")

SVM for non-separable data

$$
\begin{aligned}
& \min _{w, b}\|w\|_{2}^{2}+c \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right\} \\
& \text { Trades off }\|w\|_{2}^{2} \text { and functional margins over data }
\end{aligned}
$$

all examples have zero Hinge loss, but w has large norm

Bad geometric margin but good functional margin (achieved by "cheating")

Potentially overfitting to the noise, not a good classifier in test time maybe

Empirical Risk Minimization

ERM

Recall the general supervised learning setting:

ERM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$

ERM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$
Each data point is i.i.d sampled from P, i.e., $x_{i}, y_{i} \sim P$

ERM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$
Each data point is i.i.d sampled from P, i.e., $x_{i}, y_{i} \sim P$
Hypothesis $h: \mathscr{X} \rightarrow$, \& hypothesis class $\mathscr{H}:=\{h\} \subset \mathscr{X} \mapsto \mathbb{R}$

$$
\begin{aligned}
& \{+1,-1\} \leftarrow C \text { lassifiatibn } \\
& R \in \text { Regressisn }
\end{aligned}
$$

ARM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$
Each data point is i.i.d sampled from P, i.e., $x_{i}, y_{i} \sim P$

Hypothesis $h: \mathscr{X} \rightarrow \mathbb{R}, \&$ hypothesis class $\mathscr{H}:=\{h\} \subset \mathscr{X} \mapsto \mathbb{R}$

Loss function: $\ell(h(x), y)$

ERM

The ultimate objective function:
$\arg \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P}[l(h(x), y)]$

ERM

The ultimate objective function:

ERM

The ultimate objective function:

Instead we have its empirical version

ERM

The ultimate objective function:

Instead we have its empirical version

$$
\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

ERM

The ultimate objective function:

Instead we have its empirical version

$$
\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

Empirical risk / Empirical error

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min \frac{1}{h \in \mathscr{C}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

We often are interested in the true performance of $\hat{h}_{E R M}$:

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{R}} \frac{1}{n} \sum_{i=1}^{n}\left\lfloor\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

We often are interested in the true performance of $\hat{h}_{E R M}$:

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

We often are interested in the true performance of $\hat{h}_{E R M}$:

$$
\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right]
$$

Note $\hat{h}_{E R M}$ is a random quantity as
it depends on data \mathscr{D}

The generalization error of ERM solution

$$
\hat{h}_{E R M}:=\arg \min _{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

We often are interested in the true performance of $\hat{h}_{E R M}$:

Note $\hat{h}_{E R M}$ is a random quantity as it depends on data \mathscr{D}
e.g., In LR: $\hat{w}=\left(X X^{\top}\right)^{-1} X Y$.

The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

$$
\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \approx \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)
$$

performance ot ERM

The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

$$
\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \approx \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)
$$

The Minimum expected loss we could get if we knew P

The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

$$
\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \approx \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)
$$

The Minimum expected loss we could get if we knew P

However, this may not hold if we are not careful about designing \mathscr{H}

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \rightarrow y$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \rightarrow y$

$$
\text { Zero one loss } \ell(h(x), y)=\mathbf{1}(h(x) \neq y)
$$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

> Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \rightarrow y$

> Zero one loss $\ell(h(x), y)=\mathbf{1}(h(x) \neq y)$

> Let us consider this solution that memorizes data:

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the smaller square, else red

Consider a hypothesis class \mathscr{H} contains ALL mappings from $x \rightarrow y$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

$$
\hat{h}(x)= \begin{cases}y_{i} & \text { if } \exists i, x_{i}=x \\ +1 & \text { else }\end{cases}
$$

$$
\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{h}\left(x_{i}\right), y_{i}\right)=0
$$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

$$
\begin{aligned}
& \hat{h}(x)= \begin{cases}y_{i} & \text { if } \exists i, x_{i}=x \\
+1 & \text { else }\end{cases} \\
& \quad \Rightarrow \frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{h}\left(x_{i}\right), y_{i}\right)=0
\end{aligned}
$$

Q: But what's the true expected error of this \hat{h} ?

Example:

$P: x$ uniformly distribution over the square; Label: blue if inside the dashed square, else red

$$
\hat{h}(x)= \begin{cases}y_{i} & \text { if } \exists i, x_{i}=x \\ +1 & \text { else }\end{cases}
$$

$$
\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{h}\left(x_{i}\right), y_{i}\right)=0
$$

Q: But what's the true expected error of this \hat{h} ?

A: area of smaller box / total area

ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$
\hat{h}_{E R M}:=\underset{h \in \mathscr{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$
\hat{h}_{E R M}:=\underset{h \in \mathscr{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left[\ell\left(h\left(x_{i}\right), y_{i}\right)\right]
$$

By restricting to \mathscr{H}, we bias towards solutions from \mathscr{H}

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$
\begin{aligned}
\mathbb{E}_{\mathscr{D}} & {\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] } \\
& \leq \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)+O(1 / \sqrt{n})
\end{aligned}
$$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$
\begin{aligned}
& \mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] \\
& \\
& \leq \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)+O(1 / \sqrt{n}) \\
& \leq O(1 / \sqrt{n})=\varnothing
\end{aligned}
$$

Example:

$P: x$ uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathscr{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$
\begin{aligned}
\mathbb{E}_{\mathscr{D}} & {\left[\mathbb{E}_{x, y \sim P} \ell\left(\hat{h}_{E R M}(x), y\right)\right] } \\
& \leq \min _{h \in \mathscr{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y)+O(1 / \sqrt{n}) \\
& \leq O(1 / \sqrt{n})
\end{aligned}
$$

(Exact proof out of the scope of this class - see CS 4783/5783)

Summary

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict \mathscr{H}

After Prelim

We will continue from ERM:
Examples of loss functions, ways to restrict the hypothesis classes, why that really matters in ML (theory and practice)

