
Support Vector Machine

 



Announcements

1. Prelim Conflict form is going out soon

2. Prelim practice: we will release previous semesters’ prelims w/ solutions

3. HW4 will be out today, P4 will be out Thursday



Goal for today

Understand the Support Vector Machine (SVM) — a turnkey classification algorithm 



Outline for Today

1. Functional Margin & Geometric Margin

2. Support Vector Machine for separable data

3. SVM for non-separable data
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Functional margin 
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z := y(w⊤x + b)

Logistic Regression asumes P(y |x; w, b) = 1
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A good classifier should have large functional 
margin on training examples:

For all ,  (xi, yi) yi(w⊤xi + b) ≫ 0

z := y(w⊤x + b)

Logistic Regression asumes P(y |x; w, b) = 1
1 + exp(−y(w⊤x + b))

However, functional margin is NOT scale-
invariant:

Consider : functional margin is 
doubled

(2w,2b)

Recall Logistic Regression
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{x : w⊤x + b = 0}

Fact 1.  is parallel to :x − xP w
x − xp = αw
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d = ∥x − xp∥2 = ∥αw∥2

Final step:

= |w⊤x + b |
∥w∥2
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Geometric Margin is Scale Invariant

Hyperplane defined by , i.e., (w, b)
{x : w⊤x + b = 0} We scale  by a constant  (w, b) γ ∈ ℝ+

Q: is the hyperplane defined by 
 different?(γw, γb)

|w⊤x + b |
∥w∥2

Q: does the margin change?

Hyperplane & Geometric margin are 
scale invariant!
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Which linear classifier is Better?

+

-

Both hyperplanes correctly separate 
the data



Max Margin Classifier

The Goal of SVM:  

Find a hyperplane that has the largest 
Geometric margin
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We want to find  s.t. it separates the 
data, and maximizes 

(w, b)
γ(w, b)

max
w,b

γ(w, b)

s.t.∀i, yi(w⊤xi + b) ≥ 0

Plug in the def of :γ(w, b)

max
w,b

1
∥w∥2

min
xi

|w⊤xi + b |

s.t.∀i, yi(w⊤xi + b) ≥ 0
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SVM for separable data: Max Margin Classifier

s.t.∀i, yi(w⊤xi + b) ≥ 0
min

i
|w⊤xi + b | = 1

min
w,b

∥w∥2
2

We can further simplify the constraint

∀i : yi(w⊤xi + b) ≥ 1

min
w,b

∥w∥2
2

You will prove that in HW4!
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Summary for Max Margin Classifier

∀i : yi(w⊤xi + b) ≥ 1

min
w,b

∥w∥2
2

Not only linearly separable, but also 
has functional margin no less than 1

Avoids “cheating” (i.e., scale  up by large constant)w, b

Always remember where we started: 
We want to find  s.t. it 

separates the data, and maximizes 
(w, b)

γ(w, b)



Support Vectors

for the optimal  pair,  points  
such that are called 

support vectors

(w, b) xi
yi(w⊤xi + b) = 1

w⊤x + b = 1w⊤x + b = − 1
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If data is not linearly separable, then there is no  
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∀i : yi(w⊤xi + b) ≥ 1 − ξi,
ξi ≥ 0,∀i

Q: does this always has a feasible solution?
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SVM for non-separable data

min
w,b,ξi

∥w∥2
2 + c

n

∑
i=1

ξi

∀i : yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

Penalizing large slacks

We can turn this constrained opt to a unconstraint opt w/ a single objective.

Q: For any fixed  pair, how to set , such that the obj is minimized? (w, b) ξi

A: set ξi = max{0, 1 − yi(w⊤xi + b)}
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min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Hinge loss

z := y(w⊤x + b)

max{0,1 − z}

1

Hinge loss starts penalizing when 
functional margin falls below 1

Hinge loss upper 
bounds zero-one loss



SVM for non-separable data
min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Trades off  and functional margins over data∥w∥2

2



SVM for non-separable data
min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Trades off  and functional margins over data∥w∥2

2

When : 

forcing  for as many data points as possible

c → + ∞
yi(w⊤xi + b) ≥ 1
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min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Trades off  and functional margins over data∥w∥2

2

When : 

forcing  for as many data points as possible

c → + ∞
yi(w⊤xi + b) ≥ 1

When : 

The solution  (i.e., we do not care about hinge loss part)

c → 0+

w → 0
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SVM for non-separable data
min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Trades off  and functional margins over data∥w∥2

2

C = 100

all examples have zero Hinge loss, but 
 has large normw

Bad geometric margin but good functional 
margin (achieved by “cheating”)

Potentially overfitting to the noise, not a good 
classifier in test time maybe
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Summary for today

1. SVM for linearly separable data

∀i : yi(w⊤xi + b) ≥ 1
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w,b
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2. SVM for non-separable data

min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Hinge loss


