
Optimization:  
Stochastic Gradient Descent
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GD: simply follow the negative of the gradient  

GD w/ momentum: think about gradient as “acceleration”, “velocity” is the exponential 
average of “acceleration” — help power through very flat region
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First-order Taylor 
expansion at :wt
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Objective

Understand the Stochastic GD algorithm, its convergence, and its 
benefits over GD



Outline for Today

2. Mini-Batch SGD

1. Stochastic Gradient Descent
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Loss minimization in ML

In ML, the loss we minimize typically has some special form, e.g., in LR:

ℓ(w) = 1
n

n

∑
i=1

ln (1 + exp(−yi(w⊤xi)))

To compute the gradient , we need to enumerate all n training data points∇ℓ(w)

Can be very slow!

Avg over n data points, i.e., 
n

∑
i=1

ℓ(xi, yi; w)/n



Stochastic GD to rescue

In ML, the loss we minimize typically has some special form, e.g., in LR:

ℓ(w) = 1
n

n

∑
i=1

ln (1 + exp(−yi(w⊤xi)))

Avg over n data points, i.e., 
n

∑
i=1

ℓ(xi, yi; w)/n

Idea: randomly sample a data point use  to replace (x, y), ∇ℓ(x, y; w) ∇ℓ(w)
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Stochastic GD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize  randomlyw0 ∈ ℝd

Iterate until convergence:

2. Compute noisy gradient g̃t = ∇ℓ(xi, yi; w) |w=wt

3. Update (GD): wt+1 = wt − ηg̃t

1. Randomly sample a point  from the n data points(xi, yi)
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Claim: the random noisy gradient is an unbiased estimate of the true gradient

&

Note the point  is uniformly random sampled from n data points, we have:(xi, yi)

∇ℓ(xi, yi; w)

= 1
n

n

∑
i=1

∇ℓ(xi, yi; w) = ∇ 1
n

n

∑
i=1

ℓ(xi, yi; w)

ℓ(w)

= ∇ℓ(w)



Intuition of why Stochastic GD can work

GD
SGD



Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ -Lipschitz gradient, i.e., . 
Assume for all iteration t,  is unbiased, and ,  


β ∥∇ℓ(w) − ∇ℓ(w′ )∥2 ≤ β∥w − w′ ∥2
g̃t &∥g̃t∥2

2 ≤ σ2



Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ -Lipschitz gradient, i.e., . 
Assume for all iteration t,  is unbiased, and ,  


β ∥∇ℓ(w) − ∇ℓ(w′ )∥2 ≤ β∥w − w′ ∥2
g̃t &∥g̃t∥2

2 ≤ σ2

then with , SGD satisfies:η = 1
βσ2T



Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ -Lipschitz gradient, i.e., . 
Assume for all iteration t,  is unbiased, and ,  


β ∥∇ℓ(w) − ∇ℓ(w′ )∥2 ≤ β∥w − w′ ∥2
g̃t &∥g̃t∥2

2 ≤ σ2

& [ 1
T

T

∑
t=1

∥∇ℓ(wt)∥2] ≤ 2 βσ2

T

then with , SGD satisfies:η = 1
βσ2T



Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ -Lipschitz gradient, i.e., . 
Assume for all iteration t,  is unbiased, and ,  


β ∥∇ℓ(w) − ∇ℓ(w′ )∥2 ≤ β∥w − w′ ∥2
g̃t &∥g̃t∥2

2 ≤ σ2

& [ 1
T

T

∑
t=1

∥∇ℓ(wt)∥2] ≤ 2 βσ2

T

Larger variance can 
make SGD slower

then with , SGD satisfies:η = 1
βσ2T
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Empirical Benefit of SGD on Non-Convex Optimization

e.g., saddle point ℓ(x, y) = x2 − y2

GD can get stuck at the saddle point

Using a noisy gradient, we can escape 
this saddle point
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2. Mini-Batch SGD

1. Stochastic Gradient Descent
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Reduce the variance via mini-batch

SGD’s convergence typically depend on the second moment of , i.e., g̃ &∥g̃∥2
2

Larger variance implies slower convergence

Solution: we can reduce the variance using a mini-batch
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Reduce the variance via mini-batch

Randomly sample m data points from the dataset, denoted as ℬ

g̃ = 1
m ∑

(x,y)∈ℬ
∇ℓ(w; x, y)

Averaging over m points reduce the variance

Claim:  is still unbiased, and variance of  decreases as m increasesg̃ g̃
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Mini-batch SGD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize  randomlyw0 ∈ ℝd

Iterate until convergence:

2. Compute gradient g̃ = 1
m ∑

(x,y)∈ℬ
∇ℓ(w; xi, yi) |w=wt

3. Update (GD): wt+1 = wt − ηg̃t

1. Randomly sample m points, denoted as mini-batch ℬ

Batch size  & learning rate  are 
very important hyper-parameters!

m η



Closing Remarks on Optimization

1. Min-batch SGD is the foundation of today’s deep learning

2. Can use Stochastic gradients together w/ AdaGrad, GD w/ Momemtum, and Adam


