Optimization: Stochastic Gradient Descent

Recap on Optimization

GD: simply follow the negative of the gradient

Recap on Optimization

GD: simply follow the negative of the gradient

AdaGrad — each dim has its own learning rate, adapted based on the cumulation of the past squared derivatives — help make progress along all axises.

Recap on Optimization

GD: simply follow the negative of the gradient

AdaGrad — each dim has its own learning rate, adapted based on the cumulation of the past squared derivatives — help make progress along all axises.

GD w/ momentum: think about gradient as "acceleration", "velocity" is the exponential average of "acceleration" — help power through very flat region

$$w^{t+1} = w^t - \eta \nabla \mathscr{E}(w) \big|_{w = w_t}$$

$$w^{t+1} = w^t - \eta \nabla \mathscr{C}(w) \big|_{w=w}$$

$$w^{t+1} = w^t - \eta \nabla \mathscr{E}(w) \big|_{w=w}$$

$$w^{t+1} = w^t - \eta \nabla \mathscr{E}(w) \big|_{w=w}$$

$$w^{t+1} = w^t - \eta \nabla \mathscr{E}(w) \big|_{w=w}$$

$$w^{t+1} = w^t - \eta \nabla \mathscr{E}(w) \big|_{w = w_t}$$

Objective

Understand the Stochastic GD algorithm, its convergence, and its benefits over GD

Outline for Today

1. Stochastic Gradient Descent

2. Mini-Batch SGD

In ML, the loss we minimize typically has some special form, e.g., in LR:

$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + \exp(-y_i(w^{\mathsf{T}}x_i))\right) \qquad \text{NLL of logistic}$$
Regulated

In ML, the loss we minimize typically has some special form, e.g., in LR:

$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ln \left(1 + \exp(-y_i(w^{\mathsf{T}}x_i)) \right)$$

Avg over n data points, i.e., $\sum_{i=1}^{n} \frac{\ell(x_i, y_i; w)}{n}$

In ML, the loss we minimize typically has some special form, e.g., in LR:

$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ln \left(1 + \exp(-y_i(w^{\mathsf{T}}x_i)) \right)$$

Avg over n data points, i.e., $\sum_{i=1}^{n} \ell(x_i, y_i; w)/n$

To compute the gradient $\nabla \ell(w)$, we need to enumerate all n training data points

In ML, the loss we minimize typically has some special form, e.g., in LR:

$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + \exp(-y_i(w^{\mathsf{T}}x_i))\right)$$

Avg over n data points, i.e., $\sum_{i=1}^{n} \ell(x_i, y_i; w)/n$

To compute the gradient $\nabla \ell(w)$, we need to enumerate all n training data points

Can be very slow!

Stochastic GD to rescue

In ML, the loss we minimize typically has some special form, e.g., in LR:

$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ln \left(1 + \exp(-y_i(w^{\mathsf{T}}x_i)) \right)$$

Avg over n data points, i.e., $\sum_{i=1}^{n} \ell(x_i, y_i; w)/n$

<u>Idea</u>: randomly sample a data point (x, y), use $\nabla \ell(x, y; w)$ to replace $\nabla \ell(w)$

Initialize $w^0 \in \mathbb{R}^d$ randomly

Iterate until convergence:

Stochastic GD

Goal: minimize
$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)$$

Initialize $w^0 \in \mathbb{R}^d$ randomly

Iterate until convergence:

1. Randomly sample a point (x_i, y_i) from the n data points

Stochastic GD

Goal: minimize
$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)$$

Goal: $\psi^0 \in \mathbb{R}^d$ randomly
Iterate until convergence:
1. Randomly sample a point (x_i, y_i) from the n data points
2. Compute noisy gradient $\tilde{g}^t = \nabla \ell(x_i, y_i; w)|_{w=w^t}$

Stochastic GD

Goal: minimize
$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)$$

Initialize $w^0 \in \mathbb{R}^d$ randomly

Iterate until convergence:

1. Randomly sample a point (x_i, y_i) from the n data points

2. Compute noisy gradient $\tilde{g}^t = \nabla \mathscr{C}(x_i, y_i; w) |_{w=w^t}$ 3. Update (GD): $w^{t+1} = w^t - \eta \tilde{g}^t$

Intuition of why Stochastic GD can work

Claim: the random noisy gradient is an **unbiased** estimate of the true gradient

 $\mathbb{Z}\left((x_{i},y_{i};w)\right)$

 $\nabla \sum_{i=1}^{\infty} l(x_i, y_i; w) / n$

Intuition of why Stochastic GD can work

Claim: the random noisy gradient is an **unbiased** estimate of the true gradient

Note the point (x_i, y_i) is uniformly random sampled from n data points, we have:

$$E \nabla \ell(x_i, y_i; w)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \nabla \ell(x_i, y_i; w) = \nabla \left[\frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w) \right]_{\ell(w)}$$

(Informal theorem and no proof)

Consider a function w/ β -Lipschitz gradient, i.e., $\|\nabla \ell(w) - \nabla \ell(w')\|_2 \le \beta \|w - w'\|_2$. Assume for all iteration t, \tilde{g}^t is unbiased, and $\mathbb{E}\|\tilde{g}^t\|_2^2 \le \sigma^2$,

(Informal theorem and no proof)

Consider a function w/ β -Lipschitz gradient, i.e., $\|\nabla \ell(w) - \nabla \ell(w')\|_2 \le \beta \|w - w'\|_2$. Assume for all iteration t, \tilde{g}^t is unbiased, and $\mathbb{E}\|\tilde{g}^t\|_2^2 \le \sigma^2$,

then with
$$\eta = \sqrt{\frac{1}{\beta\sigma^2 T}}$$
, SGD satisfies:

(Informal theorem and no proof)

Consider a function w/ β -Lipschitz gradient, i.e., $\|\nabla \ell(w) - \nabla \ell(w')\|_2 \le \beta \|w - w'\|_2$. Assume for all iteration t, \tilde{g}^t is unbiased, and $\mathbb{E}\|\tilde{g}^t\|_2^2 \le \sigma^2$,

(Informal theorem and no proof)

Consider a function w/ β -Lipschitz gradient, i.e., $\|\nabla \ell(w) - \nabla \ell(w')\|_2 \leq \beta \|w - w'\|_2$. Assume for all iteration t, \tilde{g}^t is unbiased, and $\mathbb{E}\|\tilde{g}^t\|_2^2 \leq \sigma^2$, then with $\eta = \sqrt{\frac{1}{\beta\sigma^2 T}}$, SGD satisfies: Larger variance can make SGD slower make SGD slower $\mathbb{E}\left|\frac{1}{T}\sum_{t=1}^{T}\|\nabla \ell(w^{t})\|_{2}\right| \leq 2\sqrt{\frac{\ell\sigma^{2}}{T}}$

Empirical Benefit of SGD on Non-Convex Optimization

e.g., saddle point $\ell(x, y) = x^2 - y^2$

Empirical Benefit of SGD on Non-Convex Optimization

Empirical Benefit of SGD on Non-Convex Optimization

e.g., saddle point $\ell(x, y) = x^2 - y^2$ GD can get stuck at the saddle point 1/2Using a noisy gradient, we can escape this saddle point -1/2-11/2 $^{-1}$ -1/20 -1/21/2

Outline for Today

1. Stochastic Gradient Descent

2. Mini-Batch SGD

SGD's convergence typically depend on the second moment of \tilde{g} , i.e., $\mathbb{E} \| \tilde{g} \|_2^2$

Larger variance implies slower convergence

SGD's convergence typically depend on the second moment of \tilde{g} , i.e., $\mathbb{E} \| \tilde{g} \|_2^2$

Larger variance implies slower convergence

Solution: we can reduce the variance using a **mini-batch**

MZ1 MENT

Randomly sample m data points from the dataset, denoted as \mathscr{B}

Randomly sample m data points from the dataset, denoted as ${\mathscr B}$

 $\nabla \ell(w; x, y)$ $\tilde{g} = (x,y)\in\mathcal{B}$ **∢** 0 P P

Randomly sample m data points from the dataset, denoted as ${\mathscr B}$

$$\tilde{g} = \underbrace{\frac{1}{m} \sum_{(x,y) \in \mathscr{B}} \nabla \ell(w; x, y)}_{\text{Averaging over m points reduce the variance}}$$

Randomly sample m data points from the dataset, denoted as \mathscr{B}

$$\tilde{g} = \underbrace{\frac{1}{m} \sum_{(x,y) \in \mathscr{B}}} \mathcal{V}\ell(w; x, y)$$

Averaging over m points reduce the variance

Claim: \tilde{g} is still unbiased, and variance of \tilde{g} decreases as m increases

Initialize $w^0 \in \mathbb{R}^d$ randomly

Iterate until convergence:

Goal: minimize
$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)$$

Initialize $w^0 \in \mathbb{R}^d$ randomly

Iterate until convergence:

1. Randomly sample m points, denoted as mini-batch ${\mathscr B}$

Goal: minimize
$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)$$

Initialize $w^0 \in \mathbb{R}^d$ randomly

Iterate until convergence:

1. Randomly sample m points, denoted as mini-batch \mathscr{B} 2. Compute gradient $\tilde{g} = \frac{1}{m} \sum_{(x,y)\in\mathscr{B}} \nabla \mathscr{L}(w; x_i, y_i) |_{w=w^t}$

Goal: minimize
$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)$$

Initialize $w^0 \in \mathbb{R}^d$ randomly

Iterate until convergence:

1. Randomly sample m points, denoted as mini-batch \mathscr{B} 2. Compute gradient $\tilde{g} = \frac{1}{m} \sum_{(x,y)\in\mathscr{B}} \nabla \mathscr{C}(w; x_i, y_i) |_{w=w^t}$ 3. Update (GD): $w^{t+1} = w^t - \eta \tilde{g}^t$

Goal: minimize
$$\ell(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i, y_i; w)$$

Initialize $w^0 \in \mathbb{R}^d$ randomly Batch size m & learning rate η are very important hyper-parameters! Iterate until convergence: 1. Randomly sample m points, denoted as mini-batch \mathscr{B} 2. Compute gradient $\tilde{g} = \frac{1}{m} \sum_{(x,y) \in \mathscr{B}} \nabla \ell(w; x_i, y_i) |_{w=w^t}$ 3. Update (GD): $w^{t+1} = w^t - \eta \tilde{g}^t$

1. Min-batch SGD is the foundation of today's deep learning

2. Can use Stochastic gradients together w/ AdaGrad, GD w/ Momemtum, and Adam