
Optimization:
Stochastic Gradient Descent

Recap on Optimization

GD: simply follow the negative of the gradient

Recap on Optimization

AdaGrad — each dim has its own learning rate, adapted based on the cumulation of
the past squared derivatives — help make progress along all axises.

GD: simply follow the negative of the gradient

Recap on Optimization

AdaGrad — each dim has its own learning rate, adapted based on the cumulation of
the past squared derivatives — help make progress along all axises.

GD: simply follow the negative of the gradient

GD w/ momentum: think about gradient as “acceleration”, “velocity” is the exponential
average of “acceleration” — help power through very flat region

Recap on Gradient Descent

Gradient descent minimizes iteratively:ℓ(w)

Recap on Gradient Descent

Gradient descent minimizes iteratively:ℓ(w)
wt+1 = wt − η∇ℓ(w) |w=wt

Recap on Gradient Descent

Gradient descent minimizes iteratively:ℓ(w)
wt+1 = wt − η∇ℓ(w) |w=wt

Recap on Gradient Descent

Gradient descent minimizes iteratively:ℓ(w)
wt+1 = wt − η∇ℓ(w) |w=wt

wt

Recap on Gradient Descent

Gradient descent minimizes iteratively:ℓ(w)
wt+1 = wt − η∇ℓ(w) |w=wt

wt

ℓ(wt) + ∇ℓ(wt)⊤(w − wt)

First-order Taylor
expansion at :wt

Recap on Gradient Descent

Gradient descent minimizes iteratively:ℓ(w)
wt+1 = wt − η∇ℓ(w) |w=wt

wt

ℓ(wt) + ∇ℓ(wt)⊤(w − wt)

First-order Taylor
expansion at :wt

Recap on Gradient Descent

Gradient descent minimizes iteratively:ℓ(w)
wt+1 = wt − η∇ℓ(w) |w=wt

wt

ℓ(wt) + ∇ℓ(wt)⊤(w − wt)

First-order Taylor
expansion at :wt

wt+1

Objective

Understand the Stochastic GD algorithm, its convergence, and its
benefits over GD

Outline for Today

2. Mini-Batch SGD

1. Stochastic Gradient Descent

Loss minimization in ML

In ML, the loss we minimize typically has some special form, e.g., in LR:

ℓ(w) = 1
n

n

∑
i=1

ln (1 + exp(−yi(w⊤xi)))

Loss minimization in ML

In ML, the loss we minimize typically has some special form, e.g., in LR:

ℓ(w) = 1
n

n

∑
i=1

ln (1 + exp(−yi(w⊤xi)))

Avg over n data points, i.e.,
n

∑
i=1

ℓ(xi, yi; w)/n

Loss minimization in ML

In ML, the loss we minimize typically has some special form, e.g., in LR:

ℓ(w) = 1
n

n

∑
i=1

ln (1 + exp(−yi(w⊤xi)))

To compute the gradient , we need to enumerate all n training data points∇ℓ(w)

Avg over n data points, i.e.,
n

∑
i=1

ℓ(xi, yi; w)/n

Loss minimization in ML

In ML, the loss we minimize typically has some special form, e.g., in LR:

ℓ(w) = 1
n

n

∑
i=1

ln (1 + exp(−yi(w⊤xi)))

To compute the gradient , we need to enumerate all n training data points∇ℓ(w)

Can be very slow!

Avg over n data points, i.e.,
n

∑
i=1

ℓ(xi, yi; w)/n

Stochastic GD to rescue

In ML, the loss we minimize typically has some special form, e.g., in LR:

ℓ(w) = 1
n

n

∑
i=1

ln (1 + exp(−yi(w⊤xi)))

Avg over n data points, i.e.,
n

∑
i=1

ℓ(xi, yi; w)/n

Idea: randomly sample a data point use to replace (x, y), ∇ℓ(x, y; w) ∇ℓ(w)

Stochastic GD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

Stochastic GD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

1. Randomly sample a point from the n data points(xi, yi)

Stochastic GD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

2. Compute noisy gradient g̃t = ∇ℓ(xi, yi; w) |w=wt

1. Randomly sample a point from the n data points(xi, yi)

Stochastic GD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

2. Compute noisy gradient g̃t = ∇ℓ(xi, yi; w) |w=wt

3. Update (GD): wt+1 = wt − ηg̃t

1. Randomly sample a point from the n data points(xi, yi)

Intuition of why Stochastic GD can work

Claim: the random noisy gradient is an unbiased estimate of the true gradient

Intuition of why Stochastic GD can work

Claim: the random noisy gradient is an unbiased estimate of the true gradient

&

Note the point is uniformly random sampled from n data points, we have:(xi, yi)

∇ℓ(xi, yi; w)

= 1
n

n

∑
i=1

∇ℓ(xi, yi; w) = ∇ 1
n

n

∑
i=1

ℓ(xi, yi; w)

ℓ(w)

= ∇ℓ(w)

Intuition of why Stochastic GD can work

GD
SGD

Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ -Lipschitz gradient, i.e., .
Assume for all iteration t, is unbiased, and ,

β ∥∇ℓ(w) − ∇ℓ(w′)∥2 ≤ β∥w − w′ ∥2
g̃t &∥g̃t∥2

2 ≤ σ2

Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ -Lipschitz gradient, i.e., .
Assume for all iteration t, is unbiased, and ,

β ∥∇ℓ(w) − ∇ℓ(w′)∥2 ≤ β∥w − w′ ∥2
g̃t &∥g̃t∥2

2 ≤ σ2

then with , SGD satisfies:η = 1
βσ2T

Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ -Lipschitz gradient, i.e., .
Assume for all iteration t, is unbiased, and ,

β ∥∇ℓ(w) − ∇ℓ(w′)∥2 ≤ β∥w − w′ ∥2
g̃t &∥g̃t∥2

2 ≤ σ2

& [1
T

T

∑
t=1

∥∇ℓ(wt)∥2] ≤ 2 βσ2

T

then with , SGD satisfies:η = 1
βσ2T

Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ -Lipschitz gradient, i.e., .
Assume for all iteration t, is unbiased, and ,

β ∥∇ℓ(w) − ∇ℓ(w′)∥2 ≤ β∥w − w′ ∥2
g̃t &∥g̃t∥2

2 ≤ σ2

& [1
T

T

∑
t=1

∥∇ℓ(wt)∥2] ≤ 2 βσ2

T

Larger variance can
make SGD slower

then with , SGD satisfies:η = 1
βσ2T

Empirical Benefit of SGD on Non-Convex Optimization

e.g., saddle point ℓ(x, y) = x2 − y2

Empirical Benefit of SGD on Non-Convex Optimization

e.g., saddle point ℓ(x, y) = x2 − y2

GD can get stuck at the saddle point

Empirical Benefit of SGD on Non-Convex Optimization

e.g., saddle point ℓ(x, y) = x2 − y2

GD can get stuck at the saddle point

Using a noisy gradient, we can escape
this saddle point

Outline for Today

2. Mini-Batch SGD

1. Stochastic Gradient Descent

Reduce the variance via mini-batch

Reduce the variance via mini-batch

SGD’s convergence typically depend on the second moment of , i.e., g̃ &∥g̃∥2
2

Larger variance implies slower convergence

Reduce the variance via mini-batch

SGD’s convergence typically depend on the second moment of , i.e., g̃ &∥g̃∥2
2

Larger variance implies slower convergence

Solution: we can reduce the variance using a mini-batch

Reduce the variance via mini-batch

Randomly sample m data points from the dataset, denoted as ℬ

Reduce the variance via mini-batch

Randomly sample m data points from the dataset, denoted as ℬ

g̃ = 1
m ∑

(x,y)∈ℬ
∇ℓ(w; x, y)

Reduce the variance via mini-batch

Randomly sample m data points from the dataset, denoted as ℬ

g̃ = 1
m ∑

(x,y)∈ℬ
∇ℓ(w; x, y)

Averaging over m points reduce the variance

Reduce the variance via mini-batch

Randomly sample m data points from the dataset, denoted as ℬ

g̃ = 1
m ∑

(x,y)∈ℬ
∇ℓ(w; x, y)

Averaging over m points reduce the variance

Claim: is still unbiased, and variance of decreases as m increasesg̃ g̃

Mini-batch SGD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

Mini-batch SGD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

1. Randomly sample m points, denoted as mini-batch ℬ

Mini-batch SGD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

2. Compute gradient g̃ = 1
m ∑

(x,y)∈ℬ
∇ℓ(w; xi, yi) |w=wt

1. Randomly sample m points, denoted as mini-batch ℬ

Mini-batch SGD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

2. Compute gradient g̃ = 1
m ∑

(x,y)∈ℬ
∇ℓ(w; xi, yi) |w=wt

3. Update (GD): wt+1 = wt − ηg̃t

1. Randomly sample m points, denoted as mini-batch ℬ

Mini-batch SGD

Goal: minimize ℓ(w) = 1
n

n

∑
i=1

ℓ(xi, yi; w)

Initialize randomlyw0 ∈ ℝd

Iterate until convergence:

2. Compute gradient g̃ = 1
m ∑

(x,y)∈ℬ
∇ℓ(w; xi, yi) |w=wt

3. Update (GD): wt+1 = wt − ηg̃t

1. Randomly sample m points, denoted as mini-batch ℬ

Batch size & learning rate are
very important hyper-parameters!

m η

Closing Remarks on Optimization

1. Min-batch SGD is the foundation of today’s deep learning

2. Can use Stochastic gradients together w/ AdaGrad, GD w/ Momemtum, and Adam

