Optimization:
Stochastic Gradient Descent
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AdaGrad — each dim has its own learning rate, adapted based on the cumulation of
the past squared derivatives — help make progress along all axises.

L 11

GD w/ momentum: think about gradient as “acceleration”, “velocity” is the exponential
average of “acceleration” — help power through very flat region
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Objective

Understand the Stochastic GD algorithm, its convergence, and its
benefits over GD



Outline for Today

1. Stochastic Gradient Descent

2. Mini-Batch SGD
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Loss minimization in ML

In ML, the loss we minimize typically has some special form, e.g., in LR:

£(w)

Avg over n data points, i.e., 2 £(x,y;,w)ln
i=1

To compute the gradient VZ(w), we need to enumerate all n training data points

Can be very slow!



Stochastic GD to rescue

In ML, the loss we minimize typically has some special form, e.g., in LR:

£(w)

Avg over n data points, i.e., 2 £(x,y;,w)ln
i=1

Idea: randomly sample a data point (x, y), use VZ(x,y;w) to replace VZ(w)
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Stochastic GD

1 n
Goal: minimize £(w) = — Z (X, VW)
o

Initialize w° € R? randomly

Iterate until convergence:

1. Randomly sample a point (x;, y;) from the n data points
2. Compute noisy gradient §' = VZ(x;, ysw) | _ |

3. Update (GD): w't! = w’ — g’
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Intuition of why Stochastic GD can work

Claim: the random noisy gradient is an unbiased estimate of the true gradient

Note the point (x;, y;) is uniformly random sampled from n data points, we have:

E)VE(x;, y;w)

1 & | 1 ¢
::;Z VE(x, yow) =V ;Zf(xi,yi;w) = VZ(w)
i=1 i=1

E 4 2(w)
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Theoretical Guarantee of SGD

(Informal theorem and no proof)

Consider a function w/ f-Lipschitz gradient, i.e., | V£ (w) = YWz fllw — w/||».
Assume for all iteration t, & is unbiased, and(E||&||5 < o2,
1

po-T

then with n = , SGD satisfies:

Larger variance can
make SGD slower
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Empirical Benefit of SGD on Non-Convex Optimization

e.g., saddle point Z(x, y) = x> — y?

SRR
OO
,“N’b’,s:,zzs

SRR

Q

1/2
/ -1



Empirical Benefit of SGD on Non-Convex Optimization

e.g., saddle point Z(x, y) = x> — y?

o GD can get stuck at the saddle point
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Empirical Benefit of SGD on Non-Convex Optimization

2

e.g., saddle point Z(x,y) = x> — y
GD can get stuck at the saddle point

Using a noisy gradient, we can escape
0 this saddle point

1/2
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Reduce the variance via mini-batch

SGD’s convergence typically depend on the second moment of g, i.e., [E||g||§

Larger variance implies slower convergence

Solution: we can reduce the variance using a mini-batch
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Reduce the variance via mini-batch

ts from the dataset, denoted as &%

Randomly sample m data poi

Averaging over m points reduce the variance

Claim: g is still unbiased, and variance of ¢ decreases as m increases
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n
Goal: minimize £(w) = %Z (X, VW)
i=1
Initialize w® € R¥ randomly
lterate until convergence:

1. Randomly sample m points, denoted as mini-batch 93

1
2. Compute gradient g = — Z Vf(w;xl-, ;) |w=wt

m (x,y)ex
3. Update (GD): w*! = w! — g




Mini-batch SGD

1 n
Goal: minimize £(w) = — Z £(x;, Y, W)
o

Initialize w” € R* randomly Batch size m & learning rate  are
lterate until convergence: very important hyper-parameters!

1. Randomly sample m points,/é: ted as mini-batch %

2. Compute gradient & = — VZw;x,y,)|

w=w!
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Closing Remarks on Optimization

1. Min-batch SGD is the foundation of today’s deep learning

2. Can use Stochastic gradients together w/ AdaGrad, GD w/ Momemtum, and Adam



