Sequence Model

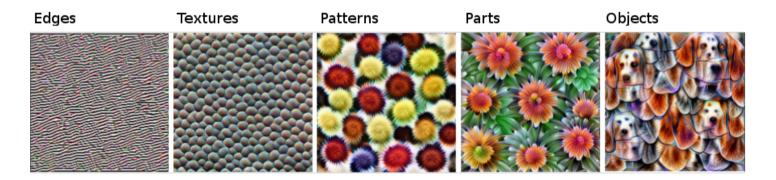
Announcements

1. Makeup exam Dec 11

2. We will release the last reading quiz today

Recap on Convolutional neural network

Learned feature representations in CNN



Objective today

Understanding neural network structures that are suitable for natural language (i.e., sequences of words)

Outline today

1. Word-2-Vec embedding and positional embedding

2. Attention model

3. Putting things together: the Transformer model

e.g., I went to the climbing gym and I ____

e.g., I went to the climbing gym and I ____

e.g., I went to the climbing gym and I ____

$$y_1 \sim P(Y = \cdot \ x_1, ..., x_n) \in \mathbb{R}^{100k}$$

e.g., I went to the climbing gym and I ____

$$y_1 \sim P(Y = \cdot \ x_1, ..., x_n) \in \mathbb{R}^{100k}$$

$$y_2 \sim P(Y = \cdot \ x_1, ..., x_n, y_1)$$

e.g., I went to the climbing gym and I ____

$$y_1 \sim P(Y = \cdot x_1, ..., x_n) \in \mathbb{R}^{100k}$$

$$y_2 \sim P(Y = \cdot x_1, ..., x_n, y_1)$$

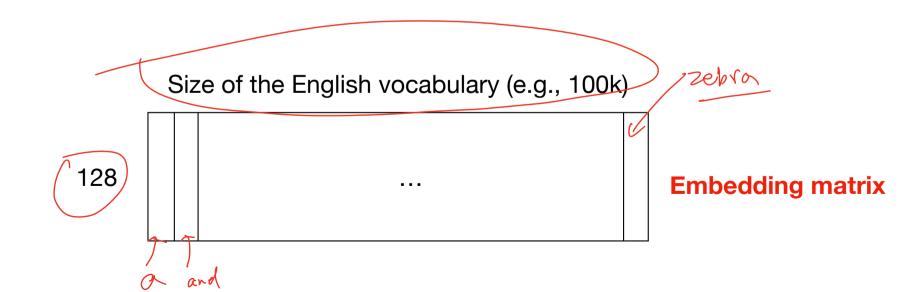
$$y_m \sim P(Y = \cdot x_1, ..., x_n, y_1, ..., y_{m-1})$$

ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I

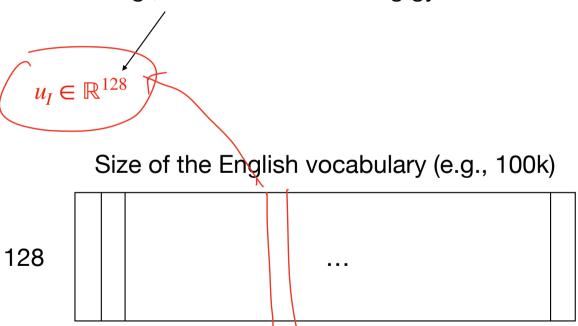
ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I



ML models only take vectors of real numbers as inputs...

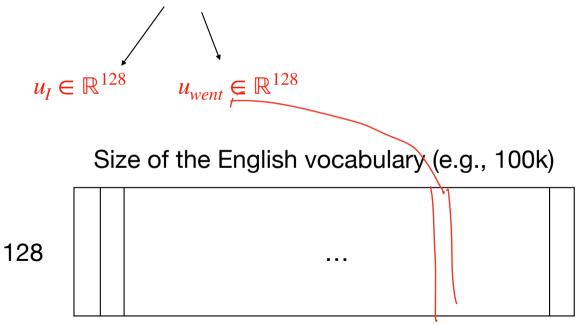
e.g., I went to the climbing gym and I



Embedding matrix

ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I



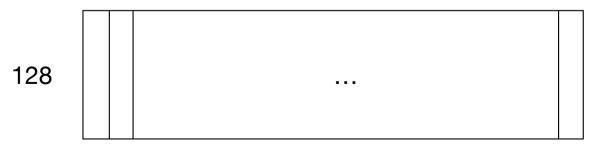
Wenl

Embedding matrix

ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I

Size of the English vocabulary (e.g., 100k)



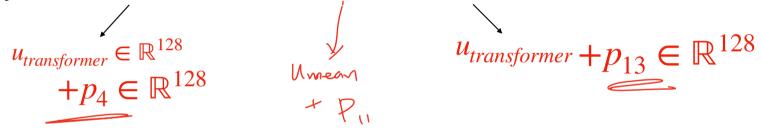
Embedding matrix

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies



Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

$$u_{transformer} \in \mathbb{R}^{128}$$

$$+p_4 \in \mathbb{R}^{128}$$

 $u_{transformer} + p_{13} \in \mathbb{R}^{128}$

Create positional embedding using sin functions

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

$$u_{transformer} \in \mathbb{R}^{128} + p_4 \in \mathbb{R}^{128}$$

$$u_{transformer} + p_{13} \in \mathbb{R}^{128}$$

Create positional embedding using sin functions

$$p_t = \begin{bmatrix} \sin(t/c_1) \\ \sin(t/c_2) \\ \dots \\ \sin(t/c_{128}) \end{bmatrix}$$

Order of the words and their positions matter...

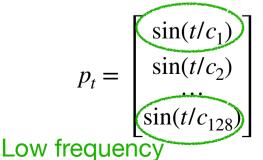
e.g., When I say Transformer in ML, I do not mean the transformer in the movies

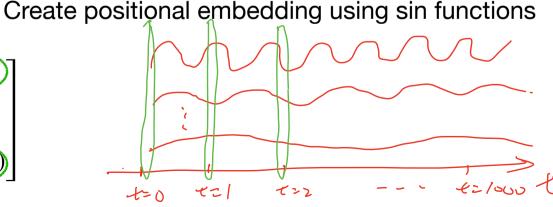
$$u_{transformer} \in \mathbb{R}^{128}$$

$$+p_4 \in \mathbb{R}^{128}$$

$$u_{transformer} + p_{13} \in \mathbb{R}^{128}$$

High frequency





Summary so far

We turn words into vectors of real numbers

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

$$u_{transformer} + p_4$$

$$u_{transformer} + p_{13} \in \mathbb{R}^{128}$$

Summary so far

We turn words into vectors of real numbers

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

$$u_{transformer} + p_4$$

 $u_{transformer} + p_{13} \in \mathbb{R}^{128}$

Feature of the word + feature of the position

Outline today

1. Word-2-Vec embedding and positional embedding

2. Attention model

3. Putting things together: the Transformer model

Motivation

e.g., When I say <u>Transformer</u> in ML, I do not mean the <u>transformer</u> in the movies

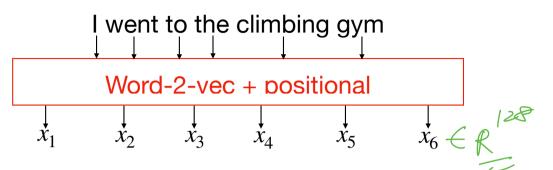
e.g., When I say <u>Transformer</u>, I literally mean the <u>transformer</u> in the movies

Motivation

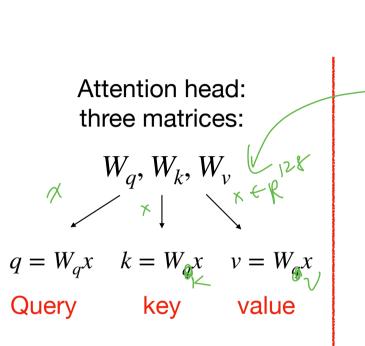
e.g., When I say Transformer in ML, I do not mean the transformer in the movies

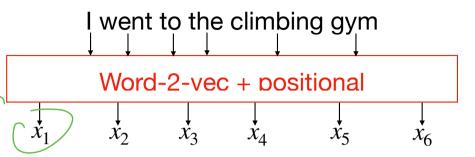
e.g., When I say Transformer I literally mean the transformer in the movies

Contextual feature: feature of a word should depend on the context around it

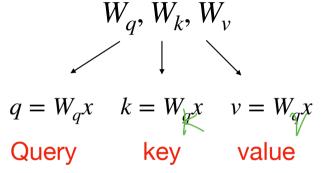


Self-attention I went to the climbing gym Word-2-vec + positional Attention head: three matrices: \dot{x}_2 $\dot{x_3}$ \dot{x}_5 (W_q, W_k, W_v)

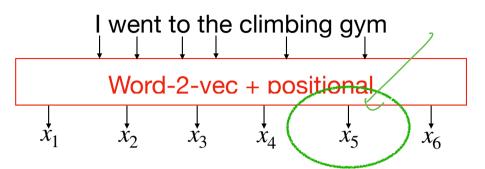




Attention head: three matrices:

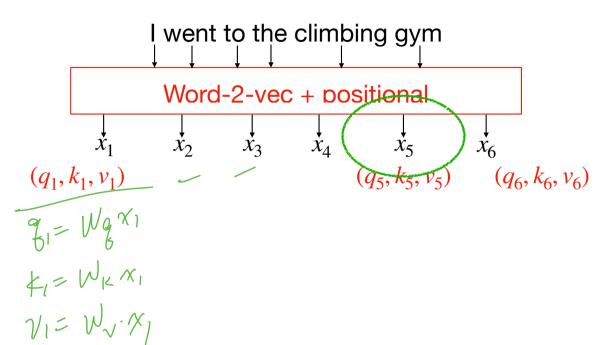


Self-attention



$$W_{q}, W_{k}, W_{v}$$

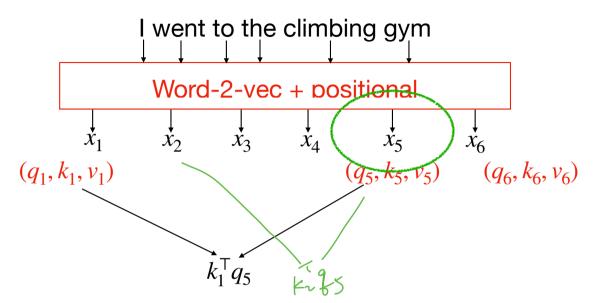
$$q = W_{q}x \quad k = W_{q}x \quad v = W_{q}x$$
Query key value



$$W_q, W_k, W_v$$

$$\downarrow$$

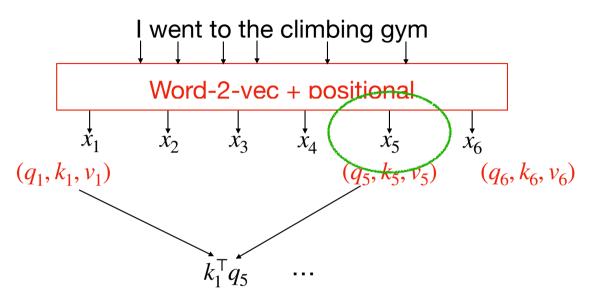
$$q = W_q x \quad k = W_q x \quad v = W_q x$$
 Query key value



$$W_q, W_k, W_v$$

$$\downarrow$$

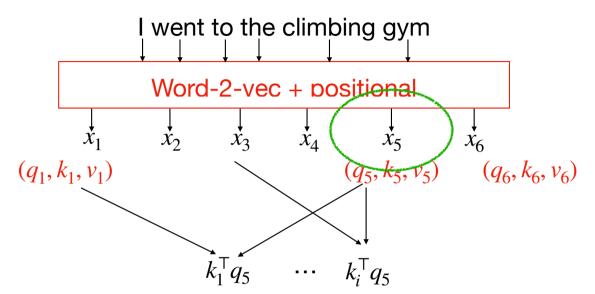
$$q = W_q x \quad k = W_q x \quad v = W_q x$$
 Query key value



$$W_q, W_k, W_v$$

$$\downarrow$$

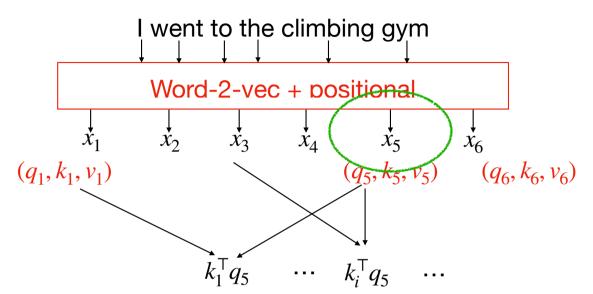
$$q = W_q x \quad k = W_q x \quad v = W_q x$$
 Query key value



$$W_q, W_k, W_v$$

$$\downarrow$$

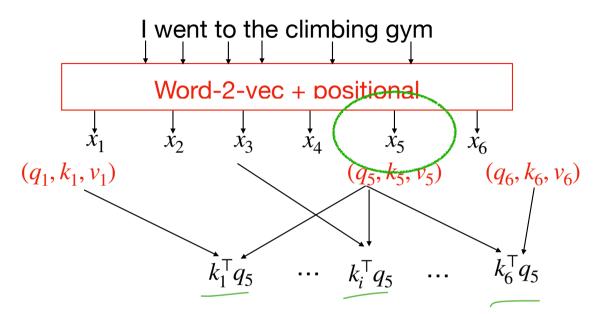
$$q = W_q x \quad k = W_q x \quad v = W_q x$$
 Query key value



$$W_q, W_k, W_v$$

$$\downarrow$$

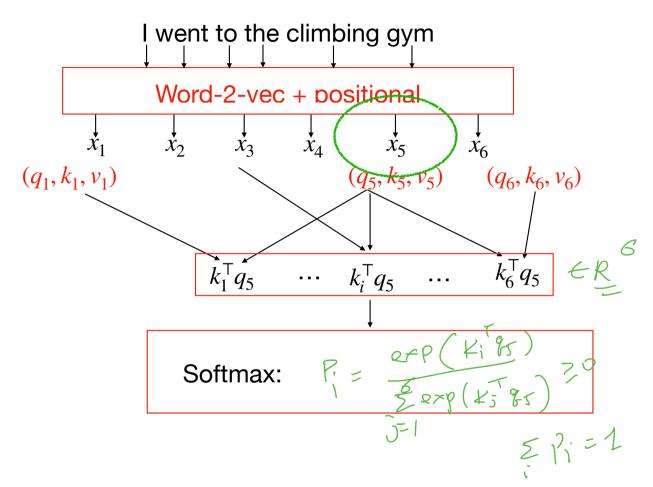
$$q = W_q x \quad k = W_q x \quad v = W_q x$$
 Query key value



$$W_q, W_k, W_v$$

$$\downarrow$$

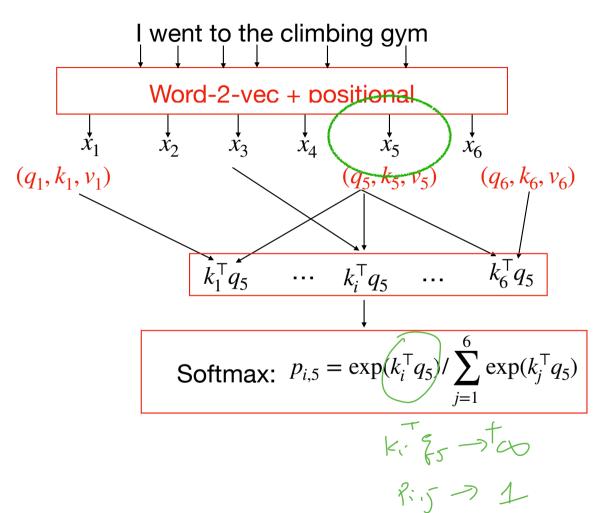
$$q = W_q x \quad k = W_q x \quad v = W_q x$$
Query key value

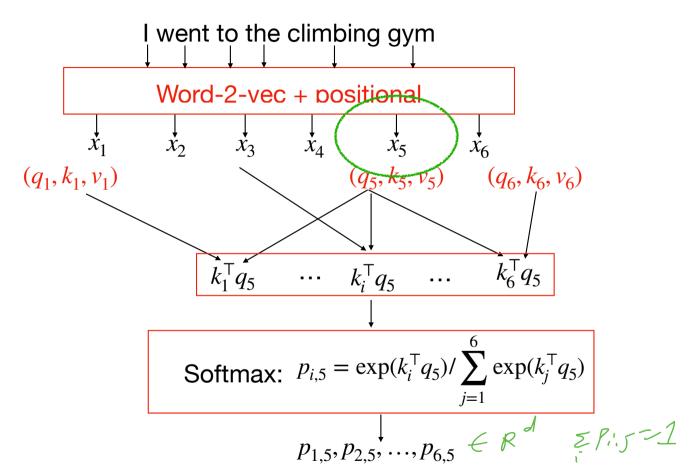


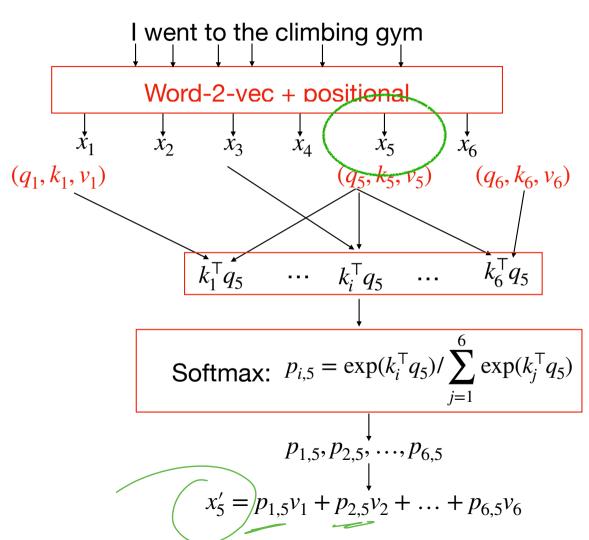
$$W_q, W_k, W_v$$

$$\downarrow \qquad \qquad \downarrow$$

$$q = W_q x \quad k = W_q x \quad v = W_q x$$
Query key value



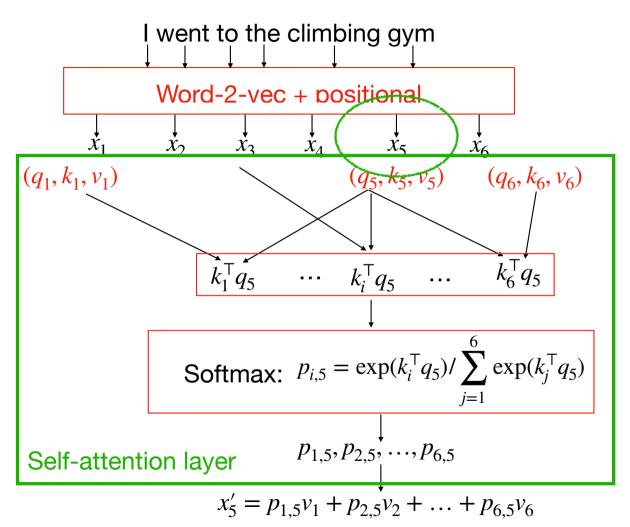


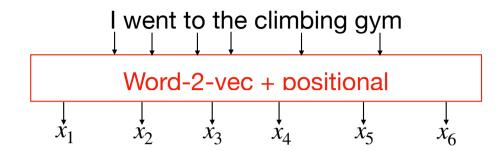


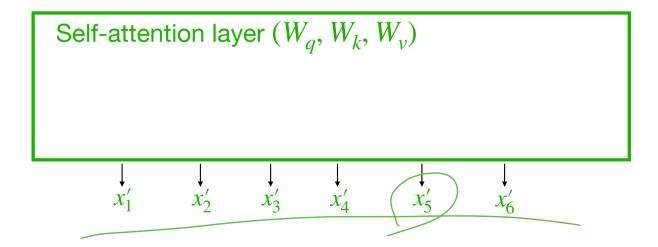
$$W_q, W_k, W_v$$

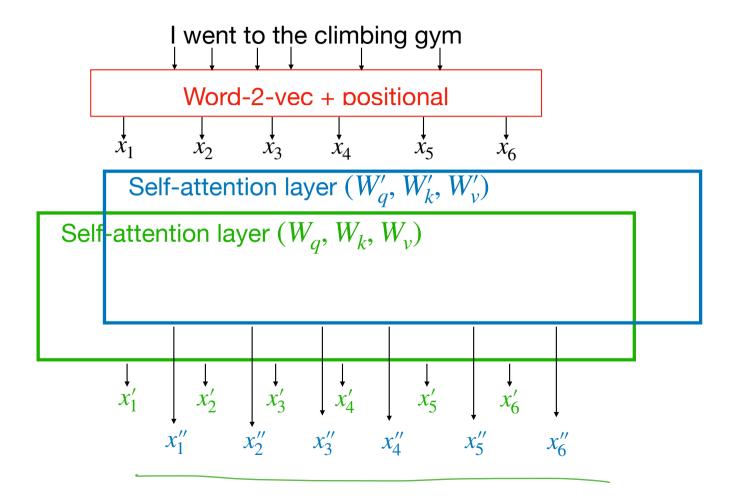
$$\downarrow \qquad \qquad \downarrow$$

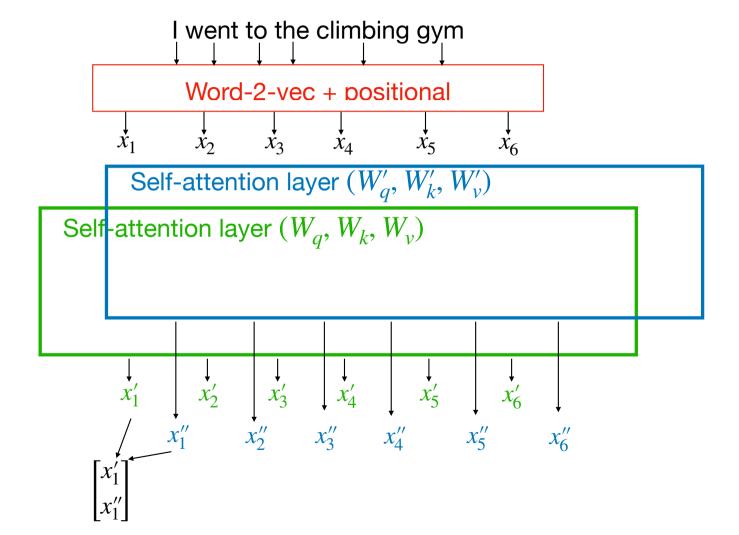
$$q = W_q x \quad k = W_q x \quad v = W_q x$$
Query key value

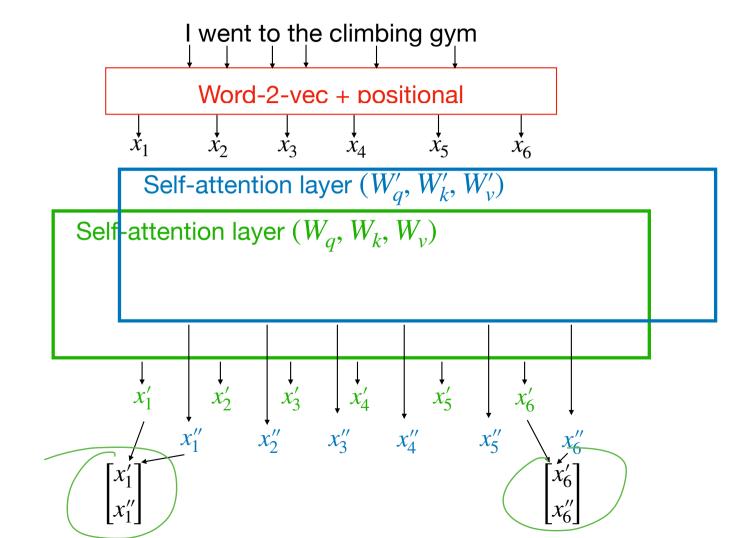




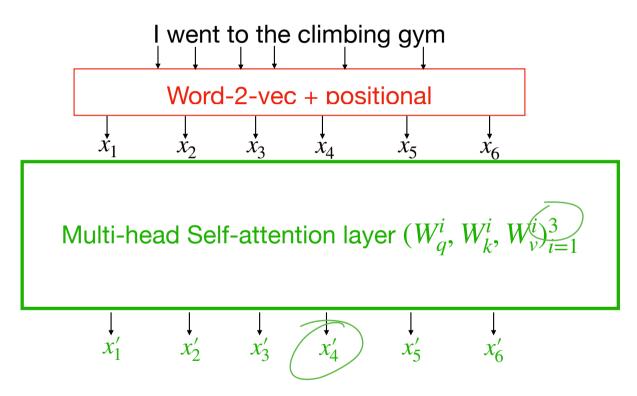








Summary so far



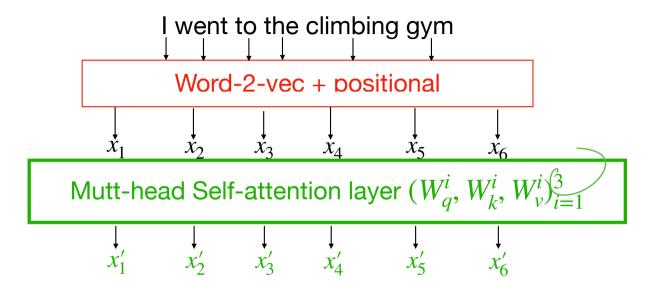
Contextual features: e.g., x_4' encodes information from all words

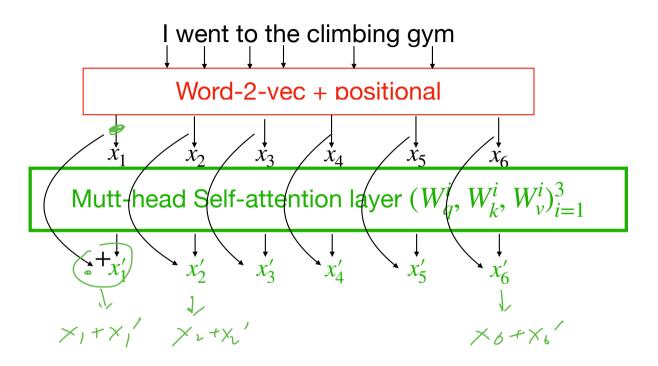
Outline today

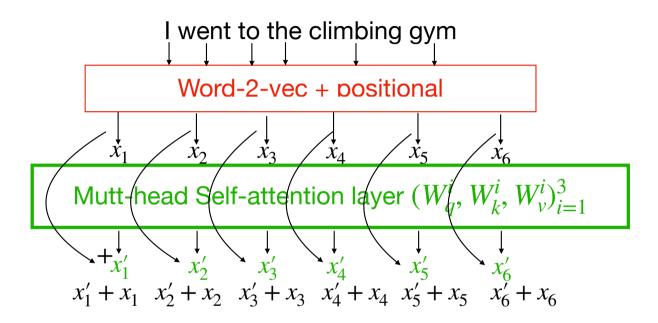
1. Word-2-Vec embedding and positional embedding

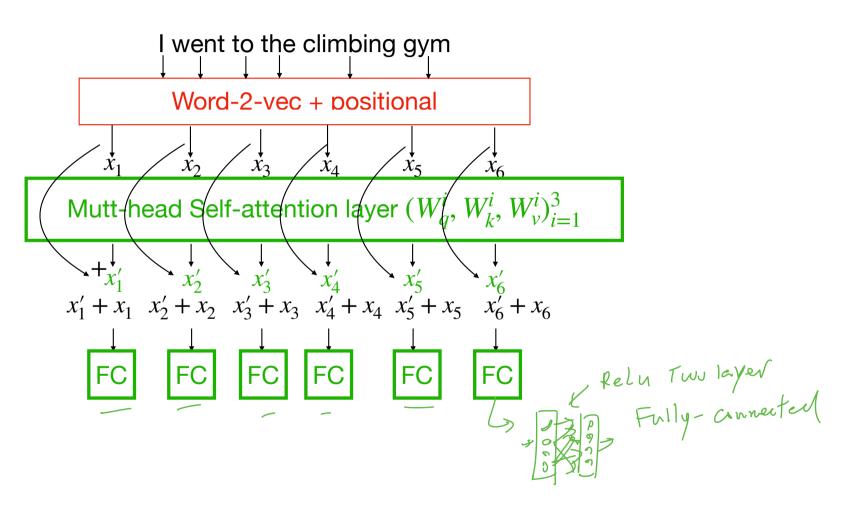
2. Attention model

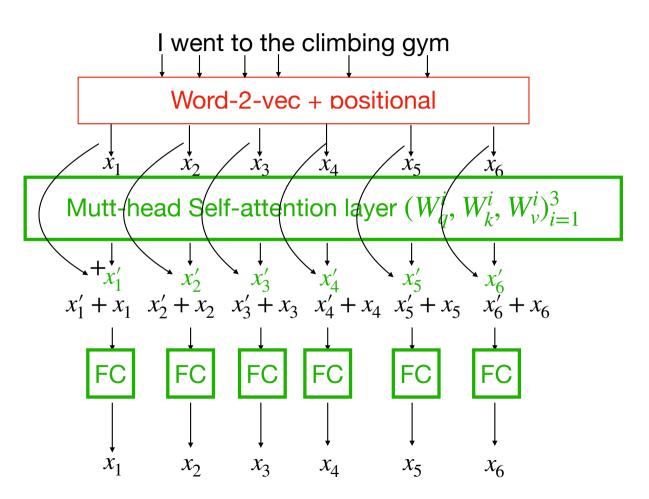
3. Putting things together: the Transformer model

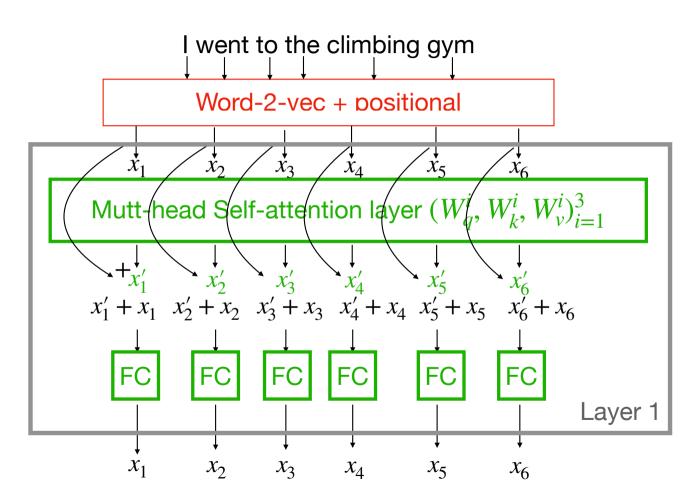


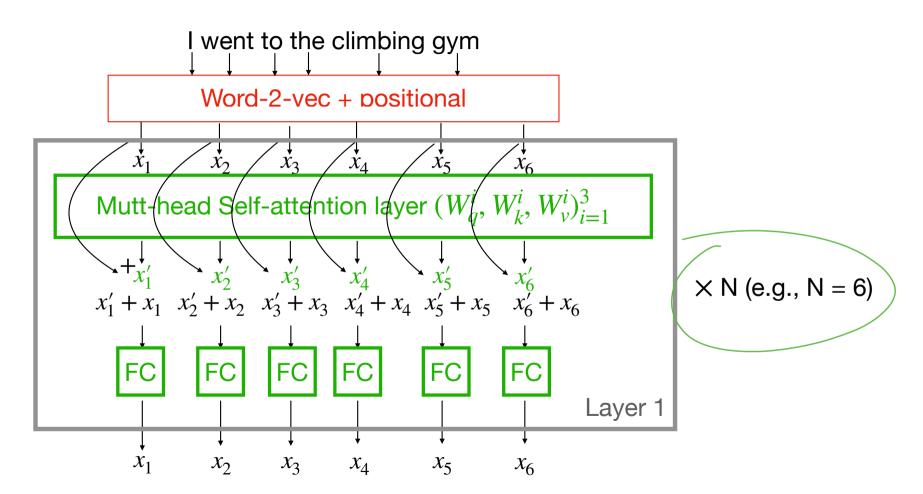


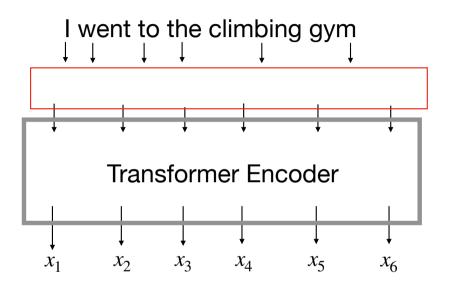


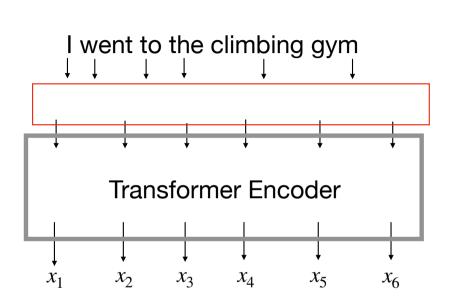




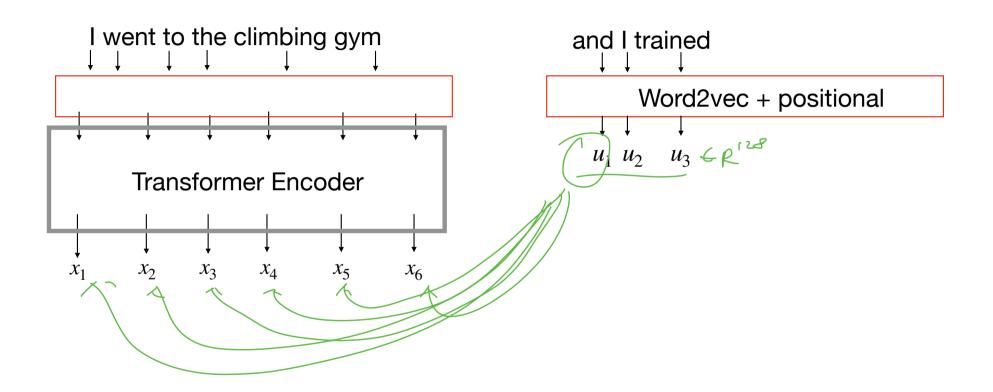


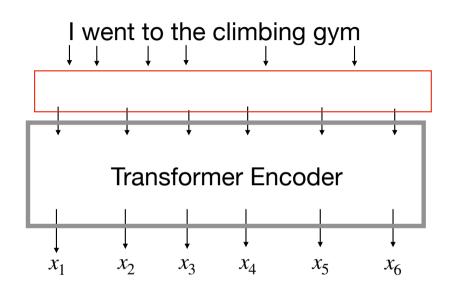


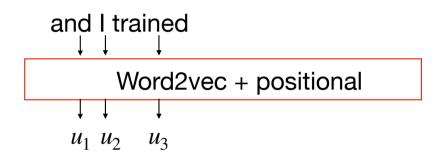




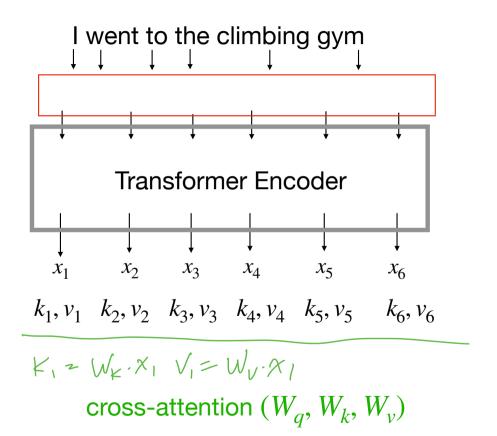
and I trained

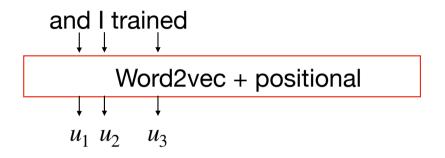


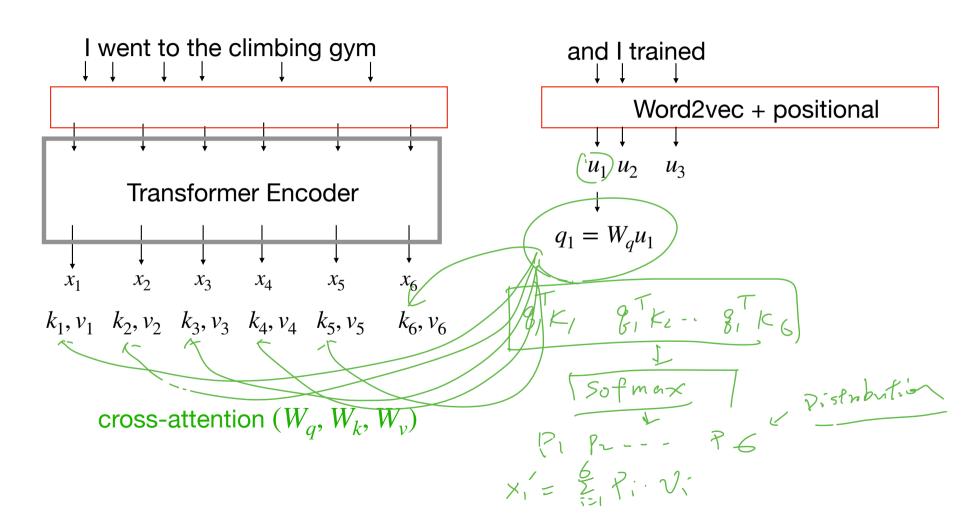


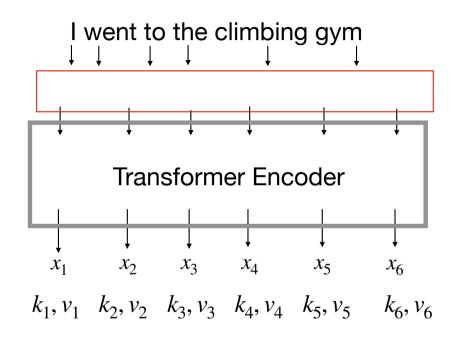


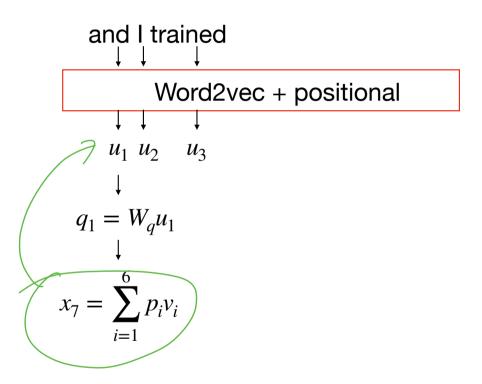
cross-attention
$$(W_q, W_k, W_v)$$

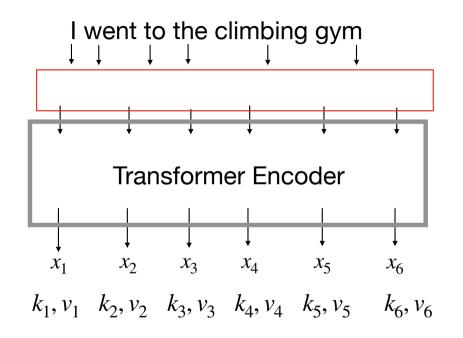


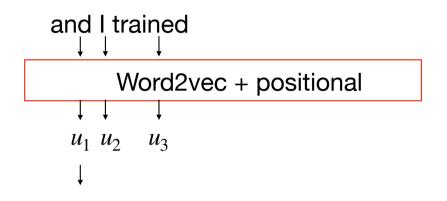


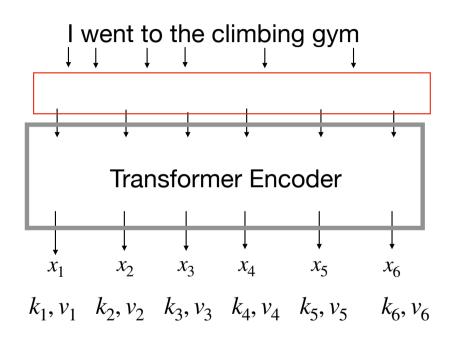


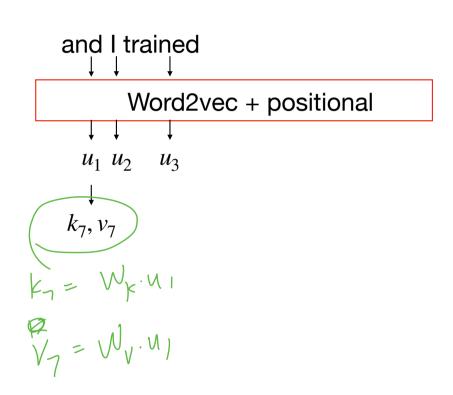


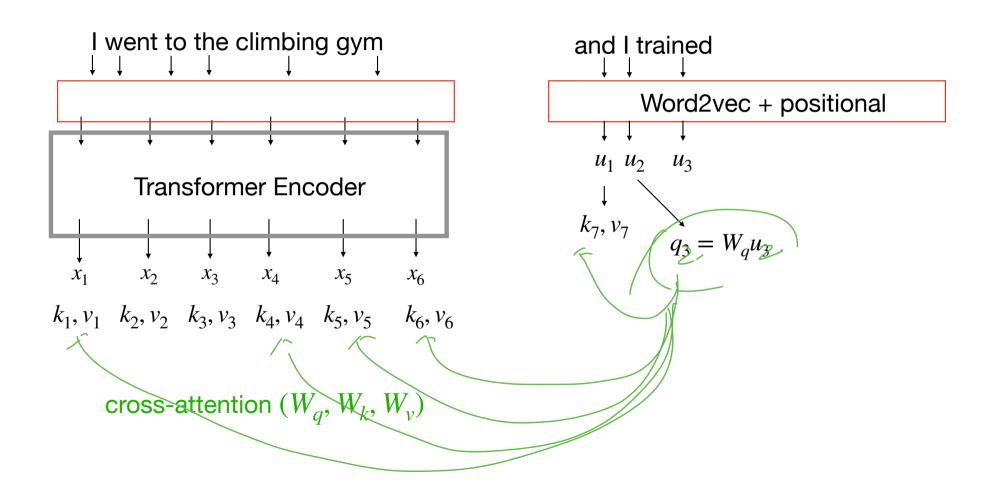


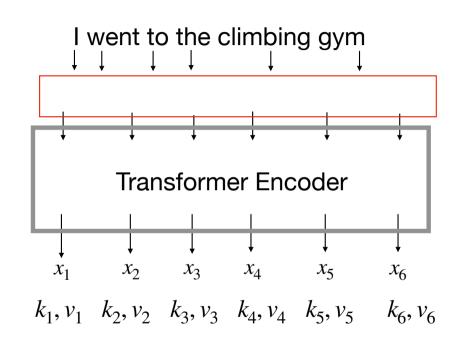


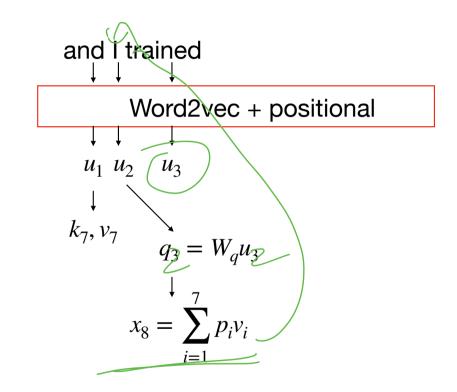


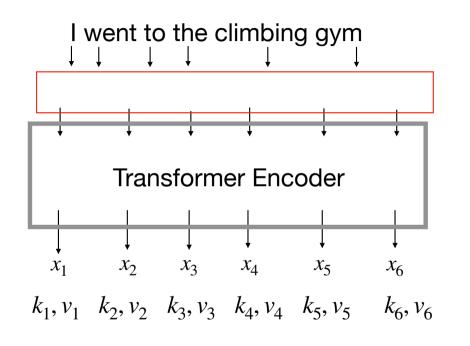


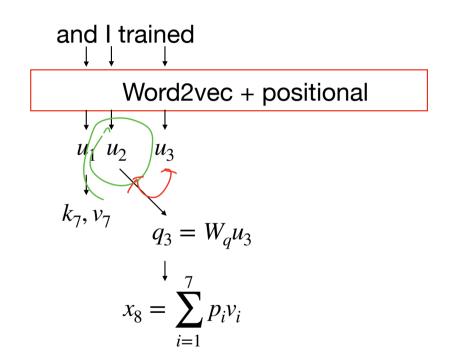






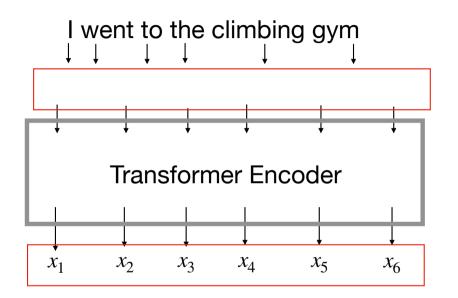


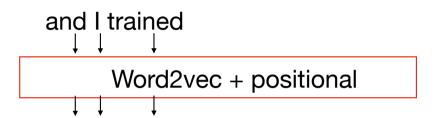


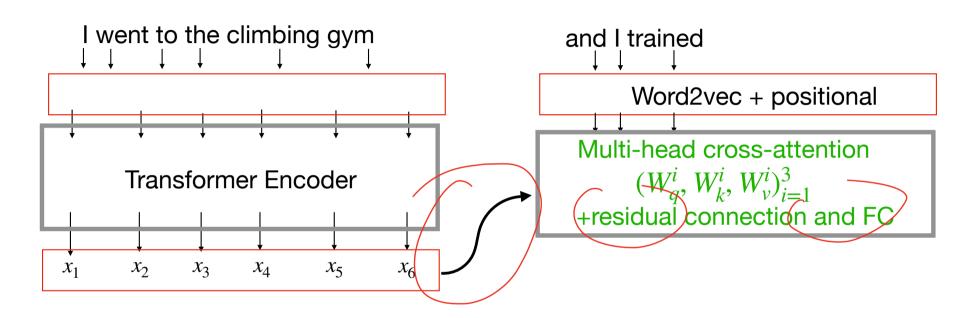


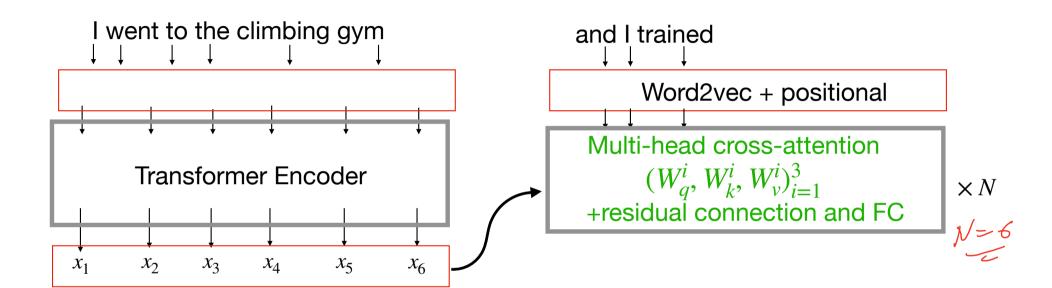
cross-attention (W_q, W_k, W_v)

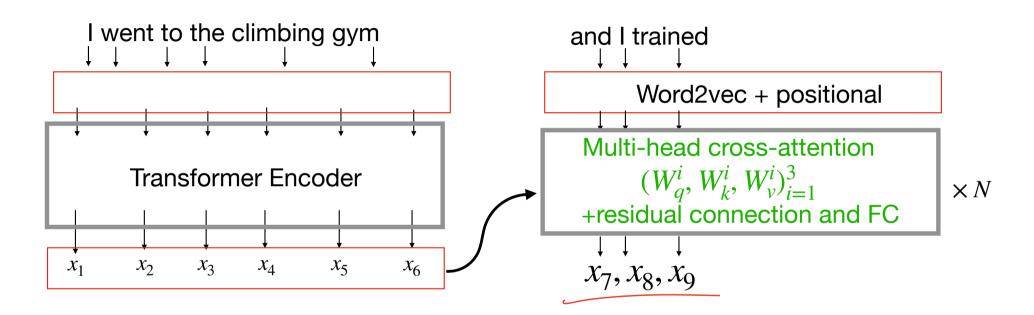
Note: we do not pay attention to future words

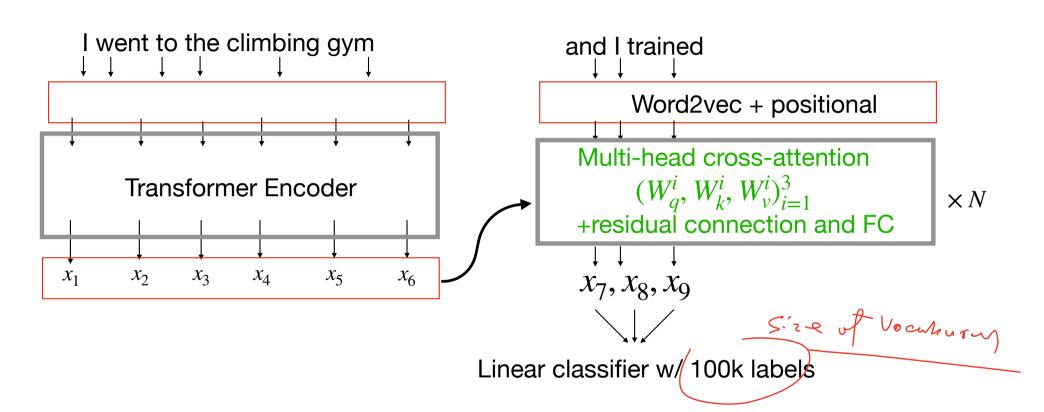


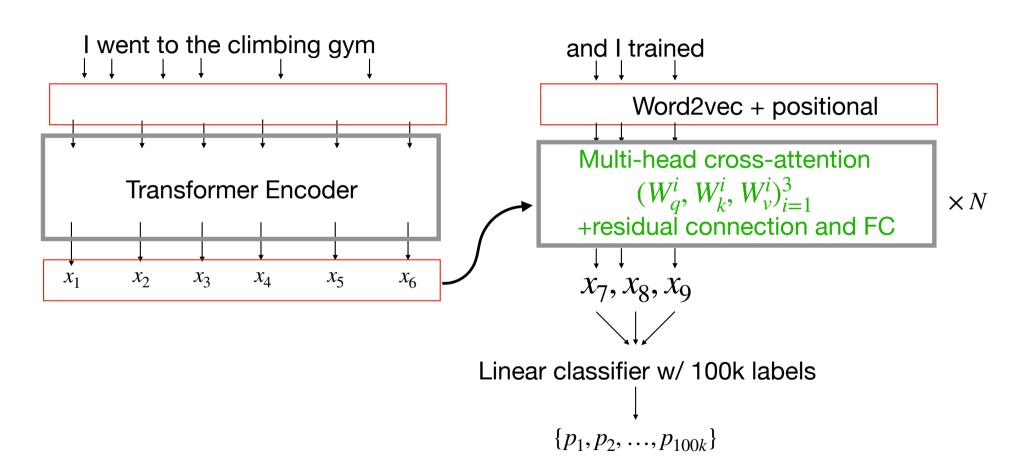


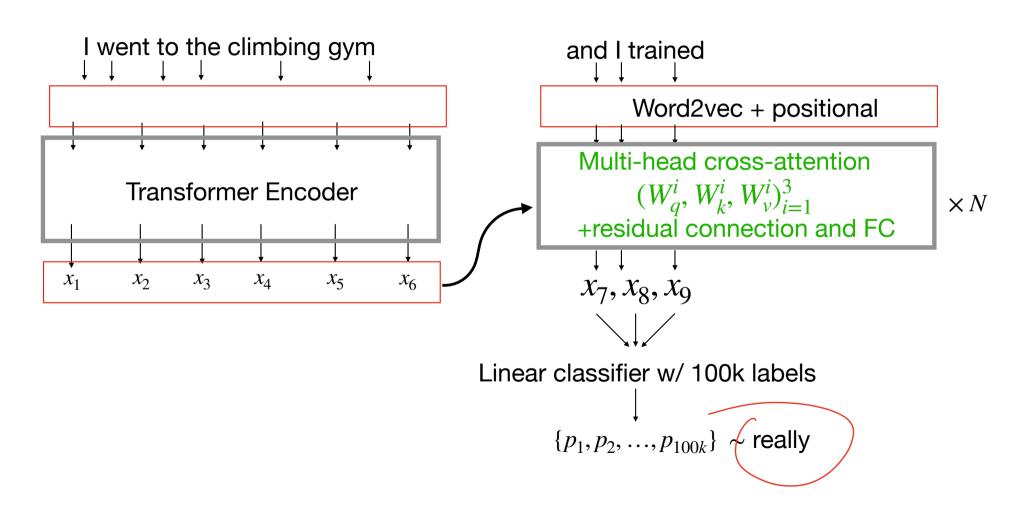


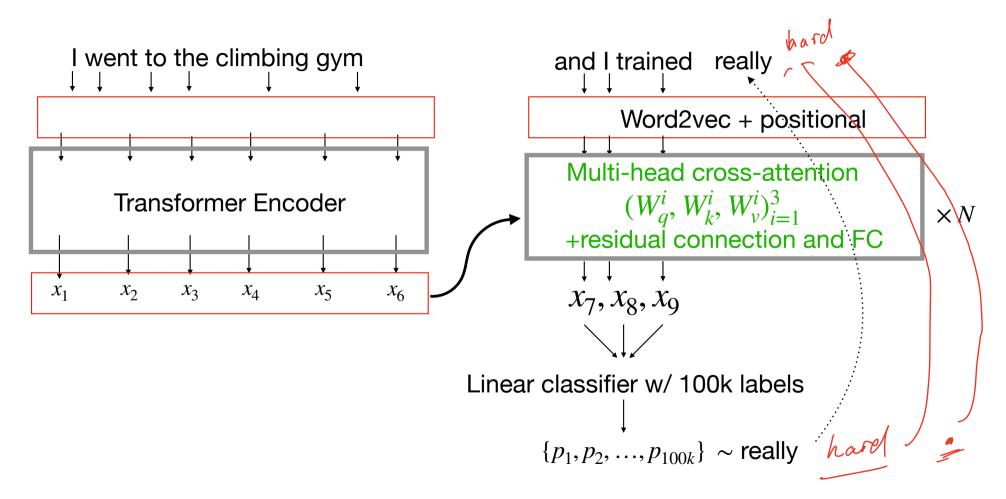












Take home task:

Check out the the original paper (not too hard to read!)

Attention Is All You Need

Ashish Vaswani*
Google Brain

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research
nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research
llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com