
Neural Network

Announcements
Kaggle competition will be released today

Task: sentiment analysis

r0: Bromwell High is a cartoon comedy. It ran at the same time as some other
programs about school life, such as "Teachers". My 35 years in the teaching
profession lead me to believe that Bromwell High's satire is much closer to reality
than is "Teachers". The scramble to survive financially, the insightful students who
can see right through their pathetic teachers' pomp, the pettiness of the whole
situation, all remind me of the schools I knew and their students. When I saw the
episode in which a student repeatedly tried to burn down the school, I immediately
recalled at High. A classic line: INSPECTOR: I'm here to sack one of
your teachers. STUDENT: Welcome to Bromwell High. I expect that many adults of
my age think that Bromwell High is far fetched. What a pity that it isn't!

r1: Story of a man who has unnatural feelings for a pig. Starts out with a opening
scene that is a terrific example of absurd comedy. A formal orchestra audience is
turned into an insane, violent mob by the crazy chantings of it's singers.
Unfortunately it stays absurd the WHOLE time with no general narrative eventually
making it just too off putting. Even those from the era should be turned off. The
cryptic dialogue would make Shakespeare seem easy to a third grader. On a
technical level it's better than you might think with some good cinematography by
future great Vilmos Zsigmond. Future stars Sally Kirkland and Frederic Forrest can
be seen briefly.

Text-encoder (a
pre-trained
transformer)

x0 ∈ ℝ384

x1 ∈ ℝ384

Preference indicate
which review is positive

y ∈ {0,1}

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …
Initialize H1 = h1 ∈ ℋ

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …
Initialize H1 = h1 ∈ ℋ

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …
Initialize H1 = h1 ∈ ℋ

−∇L(ŷ)

[
h(x1)…
h(xn)]Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …
Initialize H1 = h1 ∈ ℋ

Solve the optimization problem: ht+1 = arg max
h∈ℋ ⟨[

h(x1)…
h(xn)], − ∇L(ŷ)⟩

−∇L(ŷ)

[
h(x1)…
h(xn)]Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …
Initialize H1 = h1 ∈ ℋ

Solve the optimization problem: ht+1 = arg max
h∈ℋ ⟨[

h(x1)…
h(xn)], − ∇L(ŷ)⟩

−∇L(ŷ)

[
h(x1)…
h(xn)]

Ht+1 = Ht + αht+1

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i
pi ⋅ 1{h(xi) ≠ yi}

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i
pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Recap on AdaBoost

Adaboost follows this framework with ℓ(̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i
pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Ht+1 = Ht + 1
2 ln 1 − ϵ

ϵ
⋅ ht+1

Weaker learner: axis-aligned linear
decision boundary

Weaker learner: axis-aligned linear
decision boundary

h1 weights

Weaker learner: axis-aligned linear
decision boundary

h1 weights

Weaker learner: axis-aligned linear
decision boundary

h1 weights h2

Weaker learner: axis-aligned linear
decision boundary

h1 weights h2

h3

Weaker learner: axis-aligned linear
decision boundary

h1 weights h2

h3Final
learner

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

The definition of Weak learning

+̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Each weaker learning optimizes its own data:

The definition of Weak learning

+̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Each weaker learning optimizes its own data:

The definition of Weak learning

+̃ = {pi, xi, yi}, where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Each weaker learning optimizes its own data:

Q: assume is symmetric, i.e., iff , why does the above always hold? ℋ h ∈ ℋ −h ∈ ℋ

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
ht+1(xn)]

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
ht+1(xn)]

≥ (
n

∑
j=1

� wj �)2γ > 0
[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Weaker learnability implies approximating gradient well

ŷ

−∇L(ŷ)

(− ∇L(ŷ))⊤[
ht+1(x1)…
ht+1(xn)]

≥ (
n

∑
j=1

� wj �)2γ > 0

Within 90 degree, so
improve the objective!

[ht+1(x1), …, ht+1(xn)]⊤

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

1
n

n

∑
i=1

1{sign(HT(xi)) ≠ yi} ≤ 1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

� ℋ � = m

� + � = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

� ℋ � = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

� + � = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

� ℋ � = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}

� + � = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

� ℋ � = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

� + � = n

Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

� ℋ � = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

Boosting can be understood as running some
specific algorithm to find the Nash equilibrium of

the game

� + � = n

Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network

Linear Regression Revisit

Size of the house

Price y = w1x + w0

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

y = max{w1x + w0,0}

Linear Regression Revisit

Negative part does not
make too much sense

Size of the house

Price y = w1x + w0
We can fix this with a simple

nonlinear function

y = max{w1x + w0, 0}

y = max{w1x + w0,0}

rectified linear unit (ReLU)

A single neuron network

y = max{w1x + w0,0}

A single neuron network

y = max{w1x + w0,0}

y = − max{w1x + w0,0}

A single neuron network

y = max{w1x + w0,0}

y = − max{w1x + w0,0}

y = a max{w1x + w0,0} + b

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

max{w1x[1] + … + wd+1x[d + 1],0}

A single neuron network

x[1]

x[2]

…

x[d + 1] = 1

y
w1

w2

wd+1

a, b

max{w1x[1] + … + wd+1x[d + 1],0}

y = aReLU(w⊤x) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤w3)

y =
3

∑
i=1

aiReLU(x⊤wi) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×(d+1)

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×(d+1)

α = [a1, …, aK]⊤

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×(d+1)

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Let us stack multiple neurons together

x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×(d+1)

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Learnable feature ϕ(x)

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

It’s a pieces wise linear functions

Consider case (and assume):d = 1 b = 0

K = 1 : y = a1 max{w1x + c1, 0}
K = 2 : y = a1 max{w1x + c1, 0}

+a2 max{w2x + c2, 0}

K = 3 : y = a1 max{w1x + c1, 0}
+a2 max{w2x + c2, 0}

+a3 max{w3x + c3, 0}

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

What does a neural network approximate
y = α⊤ (ReLU(Wx)) + b

Claim: a wide enough one layer NN can approximate any smooth functions

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y

W[1] W[2] α

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y

W[1] W[2] α

y = α⊤ReLU (W[2]ReLU (W[1]x)) + b

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… ……

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… ……

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… …

z[1] = x
…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x
…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x

z[t+1] = ReLU (W[t]zt)

…

Define it by a forward pass:

A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1:

z[1] = x

z[t+1] = ReLU (W[t]zt)
y = α⊤z[T] + b

…

Define it by a forward pass:

The benefits of going deep

x[1]

x[2]

…

x[d] = 1

y… …

The benefits of going deep

Allows us to represent complicated functions without making NN too wide

x[1]

x[2]

…

x[d] = 1

y… …

Summary for today

Neural network is universal function approximation

Next lecture: backpropagation for computing gradients efficiently

