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Announcements
Kaggle competition will be released today

Task: sentiment analysis

r0: Bromwell High is a cartoon comedy. It ran at the same time as some other 
programs about school life, such as "Teachers". My 35 years in the teaching 
profession lead me to believe that Bromwell High's satire is much closer to reality 
than is "Teachers". The scramble to survive financially, the insightful students who 
can see right through their pathetic teachers' pomp, the pettiness of the whole 
situation, all remind me of the schools I knew and their students. When I saw the 
episode in which a student repeatedly tried to burn down the school, I immediately 
recalled ......... at .......... High. A classic line: INSPECTOR: I'm here to sack one of 
your teachers. STUDENT: Welcome to Bromwell High. I expect that many adults of 
my age think that Bromwell High is far fetched. What a pity that it isn't!

r1: Story of a man who has unnatural feelings for a pig. Starts out with a opening 
scene that is a terrific example of absurd comedy. A formal orchestra audience is 
turned into an insane, violent mob by the crazy chantings of it's singers. 
Unfortunately it stays absurd the WHOLE time with no general narrative eventually 
making it just too off putting. Even those from the era should be turned off. The 
cryptic dialogue would make Shakespeare seem easy to a third grader. On a 
technical level it's better than you might think with some good cinematography by 
future great Vilmos Zsigmond. Future stars Sally Kirkland and Frederic Forrest can 
be seen briefly.

Text-encoder (a 
pre-trained 
transformer)

x0 ∈ ℝ384

x1 ∈ ℝ384

Preference  indicate 
which review is positive

y ∈ {0,1}
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[
h(x1)…
h(xn)]Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn



Recap on Boosting

Boosting iteratively learns a new classifier, and add it to the ensemble

For t = 1 …
Initialize H1 = h1 ∈ ℋ

Solve the optimization problem: ht+1 = arg max
h∈ℋ ⟨[

h(x1)…
h(xn)], − ∇L(ŷ)⟩

−∇L(ŷ)
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Ht+1 = Ht + αht+1

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn
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Recap on AdaBoost

Adaboost follows this framework with ℓ( ̂y, y) = exp(− ̂y ⋅ y)

1. Create a new weighted dataset:

For each , compute  xi pi ∝ exp(− ̂yi ⋅ yi)

Binary classification: ht+1 = arg min
h∈ℋ ∑

i
pi ⋅ 1{h(xi) ≠ yi}

2. Add new learner to the ensemble:

Ht+1 = Ht + 1
2 ln 1 − ϵ

ϵ
⋅ ht+1
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Outline of Today

1. Analysis of Boosting

2. Multilayer feedforward Neural Network
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+̃ = {pi, xi, yi},  where ∑
i

pi = 1, pi ≥ 0,∀i

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Assume that weaker learner’s loss ϵ :=
n

∑
i=1

pi1{ht+1(xi) ≠ yi} ≤ 1
2 − γ, γ > 0

Each weaker learning optimizes its own data:

Q: assume  is symmetric, i.e.,  iff , why does the above always hold? ℋ h ∈ ℋ −h ∈ ℋ



Weaker learnability implies approximating gradient well

ŷ
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ŷ

−∇L(ŷ)
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Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

Note zero-one loss is upper bounded by exponential loss

1
n

n

∑
i=1

1{sign(HT(xi)) ≠ yi} ≤ 1
n

n

∑
i=1

exp(−HT(xi) ⋅ yi) ≤ n(1 − 4γ2)T/2

(Proof in lecture note, optional)
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Thinking about Boosting via two player zero sum game

h

(x, y)

1{h(x) ≠ y}

� ℋ � = m

Row player plays hypothesis h ∈ ℋ
Column player plays example (x, y)

Row player gets loss 1{h(x) ≠ y}
Column player gets loss −1{h(x) ≠ y}

Boosting can be understood as running some 
specific algorithm to find the Nash equilibrium of 

the game

� + � = n
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rectified linear unit (ReLU)
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x[1]

x[2]

…

x[d + 1] = 1

y

ReLU(x⊤w1)

ReLU(x⊤w2)

ReLU(x⊤wK)

…

Vectorized form:

Define W =
(w1)⊤

…
(wK)⊤

∈ ℝK×(d+1)

α = [a1, …, aK]⊤

y = α⊤ (ReLU(Wx)) + b

Learnable feature ϕ(x)
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A multi-layer fully connected neural network

x[1]

x[2]

…

x[d] = 1

y… … For t = 1 to T-1: 

z[1] = x

z[t+1] = ReLU (W[t]zt)
y = α⊤z[T] + b

…

Define it by a forward pass:
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The benefits of going deep

Allows us to represent complicated functions without making NN too wide

x[1]

x[2]

…

x[d] = 1

y… …



Summary for today

Neural network is universal function approximation

Next lecture: backpropagation for computing gradients efficiently


