Maximum Likelihood Estimation

 \&
Maximum A Posteriori Probability Estimation

Announcements

1. HW2 (Perceptron, PCA, K-means) will be out today

Recap on Perceptron

The Perceptron Alg:

 Initialize $w_{0}=0$

For $t=0 \rightarrow \infty$
1

Binary classifier: $\operatorname{sign}\left(w^{\top} x\right)$

Recap on Perceptron

Binary classifier: $\operatorname{sign}\left(w^{\top} x\right)$

The Perceptron Alg:

Initialize $w_{0}=0$
For $t=0 \rightarrow \infty$
feature x_{t} shows up

Recap on Perceptron

Binary classifier: $\operatorname{sign}\left(w^{\top} x\right)$

The Perceptron Alg:

Initialize $w_{0}=0$
For $t=0 \rightarrow \infty$
feature x_{t} shows up
We make a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$

Recap on Perceptron

Binary classifier: $\operatorname{sign}\left(w^{\top} x\right)$

The Perceptron Alg:

Initialize $w_{0}=0$
For $t=0 \rightarrow \infty$
feature x_{t} shows up
We make a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if \hat{y}_{t} equal to y_{t}

Recap on Perceptron

Binary classifier: $\operatorname{sign}\left(w^{\top} x\right)$

The Perceptron Alg:

Initialize $w_{0}=0$
For $t=0 \rightarrow \infty$
feature x_{t} shows up
We make a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if \hat{y}_{t} equal to y_{t}
We update $w_{t+1}=w_{t}+\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

Recap on Perceptron

Binary classifier: $\operatorname{sign}\left(w^{\top} x\right)$

The Perceptron Alg:

Initialize $w_{0}=0$
For $t=0 \rightarrow \infty$
feature x_{t} shows up
We make a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if \hat{y}_{t} equal to y_{t}
We update $w_{t+1}=w_{t}+\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

Q: how to apply this on a static dataset $\mathscr{D}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$?

Recap on Perceptron

Binary classifier: $\operatorname{sign}\left(w^{\top} x\right)$

The Perceptron Alg:

Initialize $w_{0}=0$
For $t=0 \rightarrow \infty$
feature x_{t} shows up
We make a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if \hat{y}_{t} equal to y_{t}
We update $w_{t+1}=w_{t}+\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

Objective for today:

Understand the two common statistical learning framework: MLE and MAP

Outline for today:

1. Maximum Likelihood estimation (MLE)
2. Maximum a posteriori probability (MAP)

Ex 1: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1\right. \text { means tail) }
$$

Ex 1: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1\right. \text { means tail) }
$$

Q: assume $y_{i} \quad \operatorname{Bernoulli}\left(\theta^{\star}\right)$. how to estimate θ^{\star} given \mathscr{D} ?

$$
\left\{\begin{array}{rlrl}
y_{1} & =+1 & \text { wp } \theta^{*} \\
& =-1 & & \text { wp } 1-\theta^{*}
\end{array}\right.
$$

Ex 1: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$
\begin{gathered}
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1\right. \text { means tail) } \\
\text { Q: assume } y_{i} \sim \text { Bernoulli }\left(\theta^{\star}\right) \text {, how to estimate } \theta^{\star} \text { given } \mathscr{D} \text { ? } \\
\hat{\theta}=\frac{\sum_{i=1}^{n} 1\left(y_{i}=1\right)}{n} \longleftrightarrow \theta^{*} \text {. When } n \rightarrow \infty
\end{gathered}
$$

Ex 1: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$
\begin{gathered}
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1\right. \text { means tail) } \\
\text { Q: assume } y_{i} \sim \operatorname{Bernoulli}\left(\theta^{\star}\right), \text { how to estimate } \theta^{\star} \text { given } \mathscr{D} ?
\end{gathered}
$$

$$
\hat{\theta}=\frac{\sum_{i=1}^{n} \mathbf{1}\left(y_{i}=1\right)}{n}
$$

Let's make this rigorous!

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1\right. \text { means tail) }
$$

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:
$\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1\right.$ means head in i 's trial, -1 means tail $)$

If the probability of getting head is $\theta \in[0,1]$, what is the probability of observing the data \mathscr{D} (ie., likelihood)?

$$
\begin{aligned}
P(D \mid \theta)= & \prod_{i=1}^{n}\left(P\left(y_{i}\right) \theta\right) \\
& =\left\{\begin{array}{l}
1, i=1, \mathrm{up} \theta \\
y, i=\theta-1 \\
y, u p 1-\theta
\end{array}\right.
\end{aligned}
$$

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:
$\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1\right.$ means head in i 's trial, -1 means tail)
If the probability of getting head is $\theta \in[0,1]$, what is the probability of observing the data \mathscr{D} (i.e., likelihood)?

$$
P(\mathscr{D} \mid \theta)=\theta^{n_{1}}(1-\theta)^{n-n_{1}}
$$

$$
\begin{aligned}
& n_{1}=\sum_{i=1}^{n} 1\left(y_{i}=1\right. \\
& \text { Enit heads }
\end{aligned}
$$

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:
$\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1\right.$ means head in i 's trial, -1 means tail $)$
If the probability of getting head is $\theta \in[0,1]$, what is the probability of observing the data \mathscr{D} (i.e., likelihood)?

$$
P(\mathscr{D} \mid \theta)=\theta^{n_{1}}(1-\theta)^{n-n_{1}}
$$

MLE Principle: Find θ that maximizes the likelihood of the data:

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:
$\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1\right.$ means head in i 's trial, -1 means tail $)$
If the probability of getting head is $\theta \in[0,1]$, what is the probability of observing the data \mathscr{D} (i.e., likelihood)?

$$
P(\mathscr{D} \mid \theta)=\theta^{n_{1}}(1-\theta)^{n-n_{1}} \quad P(\nabla \mid \theta)=\prod_{i=1}^{n} \mid x\left(y_{i} \mid \theta\right)
$$

MLE Principle: Find θ that maximizes the likelihood of the data:

$$
\hat{\theta}_{m l e}=\arg \max _{\theta \in[0,1]} P(\mathscr{D} \mid \theta)
$$

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:
$\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1\right.$ means head in i 's trial, -1 means tail $)$
MLE Principle: Find θ that maximizes the likelihood of the data:
$\hat{\theta}_{m l e}=\arg \max _{\theta \in[0,1]} P(\mathscr{D} \mid \theta)$

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:
$\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1\right.$ means head in i 's trial, -1 means tail)
MLE Principle: Find θ that maximizes the likelihood of the data:
$\hat{\theta}_{m l e}=\arg \max _{\theta \in[0,1]} P(\mathscr{D} \mid \theta)=\arg \max _{\theta \in[0,1]} \theta_{\Delta}^{n_{1}}(1-\theta)^{n-n_{1}}$

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1 \text { means tail }\right)
$$

MLE Principle: Find θ that maximizes the likelihood of the data:

$$
\begin{aligned}
\hat{\theta}_{m l e} & =\arg \max _{\theta \in[0,1]} P(\mathscr{D} \mid \theta)=\arg \max _{\theta \in[0,1]} \theta^{n_{1}}(1-\theta)^{n-n_{1}} \\
= & \arg \max _{\theta \in[0,1]} \frac{\ln \left(\theta^{n_{1}}(1-\theta)^{n-n_{1}}\right)}{\ln \theta^{n}+\ln (1-\theta)^{n-n_{1}} \Rightarrow n_{1} \ln \theta+\left(n-n_{1}\right) \ln (1-\theta)}
\end{aligned}
$$

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1 \text { means tail }\right)
$$

MLE Principle: Find θ that maximizes the likelihood of the data:

$$
\begin{aligned}
\hat{\theta}_{\text {mle }} & =\arg \max _{\theta \in[0,1]} P(\mathscr{D} \mid \theta)=\arg \max _{\theta \in[0,1]} \theta^{n_{1}}(1-\theta)^{n-n_{1}} \\
& =\arg \max _{\theta \in[0,1]} \ln \left(\theta^{n_{1}}(1-\theta)^{n-n_{1}}\right) \\
& =\arg \max _{\theta \in[0,1]} n_{1} \ln (\theta)+\left(n-n_{1}\right) \ln (1-\theta)
\end{aligned}
$$

Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1\right. \text { means tail) }
$$

MLE Principle: Find θ that maximizes the likelihood of the data:
$\hat{\theta}_{\text {mle }}=\arg \max _{\theta \in[0,1]} P(\mathscr{D} \mid \theta)=\arg \max _{\theta \in[0,1]} \theta^{n_{1}}(1-\theta)^{n-n_{1}}$
$=\arg \max \ln \left(\theta^{n_{1}}(1-\theta)^{n-n_{1}}\right)$
$\theta \in[0,1]$
$=\arg \max _{\theta \in[0,1]} n_{1} \ln (\theta)+\left(n-n_{1}\right) \ln (1-\theta)=\frac{n_{1}}{n}$
$z=u^{\top} x \sim N\left(\mu^{\top} u, u^{\top} \Sigma u\right)$

Ex 2: Estimate the mean

Assume data is from $\mathscr{N}\left(\mu^{\star}, I\right)$, want to estimate μ^{\star} from the data \mathscr{D}

Let's apply the MLE Principle:

$$
\begin{aligned}
\text { Step 1: } & P(\mathscr{D} \mid \mu)=\prod_{i=1}^{n} \frac{1}{\sqrt{(2 \pi)^{d}}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu\right)^{\top}\left(x_{i}-\mu\right)\right. \\
= & \prod_{i=1}^{d} P\left(X_{i} \mid \mu\right) \underbrace{}_{P\left(X_{i} \mid \mu\right)}
\end{aligned}
$$

Ex 2: Estimate the mean

Ex 2: Estimate the mean

$$
\mathscr{D}=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}^{d}
$$

Assume data is from $\mathcal{N}\left(\mu^{\star}, I\right)$, want to estimate μ^{\star} from the data \mathscr{D}

Let's apply the MLE Principle:
Step 1: $\quad P(\mathscr{D} \mid \mu)=\prod_{i=1}^{n} \frac{1}{\sqrt{(2 \pi)^{d}}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu\right)^{\top}\left(x_{i}-\mu\right)\right)$
Step 2: apply log and maximize the log-likelihood:

$$
\arg \max _{\mu} \sum_{i=1}^{n}-\left(x_{i}-\mu\right)^{\top}\left(x_{i}-\mu\right) \Rightarrow \hat{\mu}_{m l e}=\sum_{i=1}^{n} x_{i} / n
$$

Q: Estimate the mean and variance

$$
\mathscr{D}=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}
$$

Assume data is from $\mathcal{N}\left(\mu^{\star}, \sigma^{2}\right)$, want to estimate μ^{\star}, σ from the data \mathscr{D}

Q: Estimate the mean and variance

$$
\mathscr{D}=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}
$$

Assume data is from $\mathcal{N}\left(\mu^{\star}, \sigma^{2}\right)$, want to estimate μ^{\star}, σ from the data \mathscr{D}

Let's apply the MLE Principle:

$$
\text { Step 1: } \quad P(\mathscr{D} \mid \mu, \sigma)=\prod_{i=1}^{n} \frac{1}{\underbrace{\sigma \sqrt{2 \pi}}_{i}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu\right)^{2} / \sigma^{2}\right)
$$

Q: Estimate the mean and variance

$$
\mathscr{D}=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}
$$

Assume data is from $\mathcal{N}\left(\mu^{\star}, \sigma^{2}\right)$, want to estimate μ^{\star}, σ from the data \mathscr{D}

Let's apply the MLE Principle:
Step 1: $\bigcup_{P(D \mid \mu, \sigma)}=\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu\right)^{2} / \sigma^{2}\right)$
Step 2: apply log and maximize the log-likelihood:

$$
\arg \max \sum_{\mu, \sigma>0}^{n}\left(-\left(x_{i}-\mu\right)^{2} / \sigma^{2}-\ln (\sigma)\right)
$$

Q: Estimate the mean and variance

$$
\mathscr{D}=\left\{x_{i}\right\}_{i=1}^{n}, x_{i} \in \mathbb{R}
$$

Assume data is from $\mathcal{N}\left(\mu^{\star}, \sigma^{2}\right)$, want to estimate μ^{\star}, σ from the data \mathscr{D}

Let's apply the MLE Principle:

$$
\text { Step 1: } P(\mathscr{D} \mid \mu, \sigma)=\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu\right)^{2} / \sigma^{2}\right)
$$

Step 2: apply log and maximize the log-likelihood:

$$
\underset{\mu, \sigma>0}{\arg \max } \sum_{i=1}^{n}\left(-\left(x_{i}-\mu\right)^{2} / \sigma^{2}-\ln (\sigma)\right)=? ?
$$

Some properties of MLE

1. MLE is consistent: if our model assumption is correct (e.g., coin flip follows some Bernoulli distribution), then $\hat{\theta}_{m l e} \rightarrow \theta^{\star}$, as $n \rightarrow \infty$

Some properties of MLE

1. MLE is consistent: if our model assumption is correct (e.g., coin flip follows some Bernoulli distribution), then $\hat{\theta}_{\text {mle }} \rightarrow \theta^{\star}$, as $n \rightarrow \infty$
2. When our model assumption is wrong (e.g., we use Gaussian to model data which is from some more complicated distribution), then MLE loses such guarantee

Outline for today:

1. Maximum Likelihood estimation (MLE)
2. Maximum a Posteriori Probability (MAP)

Ex: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1\right. \text { means tail) }
$$

Ex: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1 \text { means tail }\right)
$$

A Bayesian Statistician will treat the optimal

 parameter θ^{\star} being a random variable:

Ex: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1 \text { means tail }\right)
$$

A Bayesian Statistician will treat the optimal

 parameter θ^{\star} being a random variable:$$
\theta^{\star} \sim P(\theta)
$$

Example: $P(\theta)$ being a Beta distribution:

$$
P(\theta)=\overparen{\theta}^{\alpha-1}(1-\theta)^{\beta-1} / Z, \quad(\alpha, \beta)
$$

where $Z=\int_{\text {hromalizer }}^{\int_{\theta \in[0,1]} \theta^{\alpha-1}(1-\theta)^{\beta-1} d_{\theta}}$

Ex: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$
\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}, y_{i} \in\{-1,1\} \quad\left(y_{i}=1 \text { means head in } i \text { 's trial, }-1 \text { means tail }\right)
$$

A Bayesian Statistician will treat the optimal parameter θ^{\star} being a random variable:'

$$
\theta^{\star} \sim P(\theta)
$$

Example: $P(\theta)$ beirzg a Beta dístribution:

$$
P(\theta)=\theta^{\alpha-1}(1-\theta)^{\beta-1} / Z
$$

$$
\text { where } Z=\int_{\theta \in[0,1]} \theta^{\alpha-1}(1-\theta)^{\beta-1} d_{\theta}
$$

The Posterior distribution over θ
Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}$, define posterior |mE: $P(\nabla \mid \theta)$ distribution:

$$
\underset{\triangle}{P(\theta \mid \mathscr{D})}
$$

$$
P(a, b)=P(b \mid a) P(a)
$$

The Posterior distribution over θ

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}$, define posterior distribution:

$$
P(\theta \mid \mathscr{D})
$$

Using Bayes rule, we get:

$$
P(\theta \mid \mathscr{D})=P(\theta) P(\mathscr{D} \mid \theta) P(P(\mathscr{D})
$$

$$
=P(D \mid \theta) \cdot P(\theta)
$$

$$
=P(\theta, D)
$$

The Posterior distribution over θ

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}$, define posterior distribution:

$$
P(\theta \mid \mathscr{D})
$$

Using Bayes rule, we get:

$$
P(\theta \mid \mathscr{D})=P(\theta) P(\mathscr{D} \mid \theta) P P(\mathscr{D})
$$

$$
\Leftrightarrow \frac{f(x)}{g(x)}=c, \forall x
$$

$$
\propto P(\theta) P(\mathscr{D} \mid \theta)
$$

$$
\text { independent of } \theta
$$

The Posterior distribution over θ

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}$, define posterior distribution:

$$
P(\theta \mid \mathscr{D})
$$

Using Bayes rule, we get:

$$
\begin{aligned}
P(\theta \mid \mathscr{D}) & =P(\theta) P(\mathscr{D} \mid \theta) / P(\mathscr{D}) \\
& \text { Posterior } \propto \text { Prior } \times \text { Likelinood }
\end{aligned}
$$

The Posterior distribution over θ

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}$, define posterior distribution:

$$
P(\theta \mid \mathscr{D})
$$

Using Bayes rule, we get:

$$
P(\theta \mid \mathscr{D})=P(\theta) P(\mathscr{D} \mid \theta) / P(\mathscr{D})
$$

$$
\propto P(\theta) P(\mathscr{D} \mid \theta)
$$

Posterior \propto Prior \times Likelihood

The Posterior distribution over θ

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}$, define posterior distribution:

$$
P(\theta \mid \mathscr{D})
$$

Using Bayes rule, we get:

$$
P(\theta \mid \mathscr{D})=P(\theta) P(\mathscr{D} \mid \theta) / P(\mathscr{D})
$$

$$
\propto P(\theta) P(\mathscr{D} \mid \theta)
$$

Posterior \propto Prior \times Likelihood

The Posterior distribution over θ

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}$, define posterior distribution:

$$
P(\theta \mid \mathscr{D})
$$

Using Bayes rule, we get:

$$
P(\theta \mid \mathscr{D})=P(\theta) P(\mathscr{D} \mid \theta) / P(\mathscr{D})
$$

$$
\propto P(\theta) P(\mathscr{D} \mid \theta)
$$

Posterior \propto Prior \times Likelihood

The Posterior distribution over θ

Now, we have a prior $P(\theta)$, and we have a dataset $\mathscr{D}=\left\{y_{i}\right\}_{i=1}^{n}$, define posterior distribution:

$$
P(\theta \mid \mathscr{D})
$$

Using Bayes rule, we get:

$$
P(\theta \mid \mathscr{D})=P(\theta) P(\mathscr{D} \mid \theta) / P(\mathscr{D})
$$

$$
\propto P(\theta) P(\mathscr{D} \mid \theta)
$$

Posterior \propto Prior \times Likelihood

Maximum A Posterior Probability estimation (MAP)

$$
\begin{aligned}
& P(\theta \mid \mathscr{D}) \propto P(\theta) P(\mathscr{D} \mid \theta) \\
& P(\theta)=\frac{1}{z} \theta^{\alpha-1}(1-\theta)^{\beta-1} \leftarrow p \sin \sqrt{n} \\
& P(0 \mid \theta)=\prod_{i=1}^{n} \theta^{n_{1}}(1-\theta)^{n-n_{1}}
\end{aligned}
$$

Maximum A Posteriori Probability estimation (MAP)

$$
\begin{gathered}
P(\theta \mid \mathscr{D}) \propto P(\theta) P(\mathscr{D} \mid \theta) \\
\hat{\theta}_{\text {map }}=\underset{\theta \in[0,1]}{\arg \max P(\theta \mid \mathscr{D})=\arg \max _{\theta \in[0,1]} P(\theta) P(\mathscr{D} \mid \theta)}
\end{gathered}
$$

Maximum A Posteriori Probability estimation (MAP)

$$
\begin{aligned}
& P(\theta \mid \mathscr{D}) \propto P(\theta) P(\mathscr{D} \mid \theta) \\
& \hat{\theta}_{\text {map }}=\arg \max _{\theta \in[0,1]} P(\theta \mid \mathscr{D})=\arg \max _{\theta \in[0,1]} P(\theta) P(\mathscr{D} \mid \theta) \\
& =\arg \max _{\theta \in[0,1]} \ln P(\theta)+\ln P(\mathscr{D} \mid \theta)
\end{aligned}
$$

Maximum A Posteriori Probability estimation (MAP)

$$
\begin{gathered}
P(\theta \mid \mathscr{D}) \propto P(\theta) P(\mathscr{D} \mid \theta) \\
\hat{\theta}_{\text {map }}=\arg \max _{\theta \in[0,1]} P(\theta \mid \mathscr{D})=\arg \max _{\theta \in[0,1]} P(\theta) P(\mathscr{D} \mid \theta) \\
=\arg \max _{\theta \in[0,1]}^{\ln } P(\theta)+\ln P(\mathscr{D} \mid \theta)
\end{gathered}
$$

MAP for coin flip

$$
\begin{aligned}
&\left.\hat{\theta}_{\text {map }}=\arg \max _{\theta \in[0,1]} \underline{\ln (P(\theta)} P(\mathscr{D} \mid \theta)\right) \\
& P(\theta)=\frac{1}{z} \theta^{\alpha-1}(1-\theta)^{\beta-1} \\
& P(\theta \mid \theta)=\prod_{i=1}^{n} \frac{P\left(y_{i} \mid \theta\right)}{\text { Reruonli }(\theta)}
\end{aligned}
$$

MAP for coin flip

$$
\hat{\theta}_{\text {map }}=\arg \max _{\theta \in[0,1]} \ln (P(\theta) P(\mathscr{D} \mid \theta))
$$

Step 1: specify Prior $P(\theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
Step 2: data likelihood $P(\mathscr{D} \mid \theta)=\theta^{n_{1}}(1-\theta)^{n-n_{1}}$
Step 3: Compute posterior $P(\theta \mid \mathscr{D}) \propto \theta^{n_{1}+\alpha-1}(1-\theta)^{n-n_{1}+\beta-1}$
Step 4: Compute MAP $\hat{\theta}_{\operatorname{map}}\left(=\frac{n_{1}+\alpha-1}{n+\alpha+\beta-2}\right.$

MAP for coin flip

$$
\hat{\theta}_{\text {map }}=\arg \max _{\theta \in[0,1]} \ln (P(\theta) P(\mathscr{D} \mid \theta))
$$

Step 1: specify Prior $P(\theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$
Step 2: data likelihood $P(\mathscr{D} \mid \theta)=\theta^{n_{1}}(1-\theta)^{n-n_{1}}$
Step 3: Compute posterior $P(\theta \mid \mathscr{D}) \propto \theta^{n_{1}+\alpha-1}(1-\theta)^{n-n_{1}+\beta-1}$
Step 4: Compute MAP $\hat{\theta}_{\text {map }}=\frac{n_{1}+\alpha-1}{n+\alpha+\beta-2}$

$\left(n_{1}+\alpha-1\right)+\left(n-n_{1}+\beta-1\right.$
($\alpha-1, \beta-1$) can be understood as some fictions flips: we had $\alpha-1$ hallucinated heads, and $\beta-1$ hallucinated tails

Some considerations on prior distributions

1. In coin flip example, when $n \rightarrow \infty, \hat{\theta}_{\text {map }}=\frac{n_{1}+\alpha-1}{n+\alpha+\beta-2} \rightarrow \frac{n_{1}}{n}\left(\right.$ i.e.,$\left.\hat{\theta}_{m l e}\right)$

Some considerations on prior distributions

1. In coin flip example, when $n \rightarrow \infty, \hat{\theta}_{\text {map }}=\frac{n_{1}+\alpha-1}{n+\alpha+\beta-2} \rightarrow \frac{n_{1}}{n}\left(\right.$ i.e., $\left.\hat{\theta}_{m l e}\right)$
2. When n is small and our prior is accurate, MAP can work better than MLE

Some considerations on prior distributions

1. In coin flip example, when $n \rightarrow \infty, \hat{\theta}_{\text {map }}=\frac{n_{1}+\alpha-1}{n+\alpha+\beta-2} \rightarrow \frac{n_{1}}{n}\left(\right.$ i.e., $\left.\hat{\theta}_{m l e}\right)$
2. When n is small and our prior is accurate, MAP can work better than MLE
3. In general, not so easy to set up a good prior....

Summary for today

1 MLE (frequentist perspective):
The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible

Summary for today

1 MLE (frequentist perspective):
The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible

$$
\begin{aligned}
& \arg \max _{\theta} P(\mathscr{D} \mid \theta) \\
& \ln / \pi^{n} \\
& \text { arg max } \max _{0 \in 0,1]} \theta^{x}(1-\theta)^{n-x} \\
& \begin{array}{rlr}
\left.\arg _{\theta \in(a i)}^{\operatorname{mox}}\right) & \frac{\ln \theta}{\theta}+(n-x) \ln (1-\theta) & \frac{x}{\theta}=\frac{n-x}{1-\theta} \\
\frac{x}{\theta}-\frac{n-x}{1-\theta}=0 & \Rightarrow \theta=\frac{x}{n}
\end{array}
\end{aligned}
$$

Summary for today

1 MLE (frequentist perspective):
The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible
$\arg \max P(\mathscr{D} \mid \theta)$
θ

2 MAP (Bayesian perspective):
The ground truth θ^{\star} treated as a random variable, i.e., $\theta^{\star} \sim P(\theta)$; we search for the parameter that maximizes the posterior

Summary for today

1 MLE (frequentist perspective):
The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible $\arg \max P(\mathscr{D} \mid \theta)$
θ
2 MAP (Bayesian perspective):
The ground truth θ^{\star} treated as a random variable, i.e., $\theta^{\star} \sim P(\theta)$; we search for the parameter that maximizes the posterior

$$
\arg \max _{\theta} P(\theta \mid \mathscr{D})=\arg \max _{\theta} P(\theta) P(\mathscr{D} \mid \theta)
$$

