Logistic Regression & convex
optimization



Announcements:

This week we will release P3 and HW3



Recap on Naive Bayes

NB is a generative model which models P(x, y)

P(y|x) x P(y)P(x|y) = P(y@[i] D

Conditional independent
assumption given label




Perceptron VS Gaussian Naive Bayes



Today

Logistic regression — a discriminative learning approach that
directly models P(y | x) for classification



Outline for today
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2. Convex optimization

3. Gradient Descent



Logistic Regression

Setting: binary classification & = {x;, y;}._, (x;,y;) ~ P,

(Note, we always assume X contains a constant 1)

Logistic regression directly models P(y | x)

p -
10 1 + exp (—y(xTw*))



Logistic Regression

Logistic regression assumes: Draw the Sigmoid function 1/(1 + exp(—Z%))

P —
710 1 + exp (—y(xTw*))

0.5
The model assigns higher prob to

y = sign(x "'w*)



Logistic Regression

Logistic regression assumes:

P(y|x) =
1 + exp (—y(xTw*))
1 o
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z:=y(x'w*)



Learn via MLE

Recall we have data D = {x;, y;}'_,

arg max P(2 | w) = argmax P ({y,}", [ {x)"_ s w)

\% W w

— P(v.|x:
argmfxg (yl\xl,w)

Plug Iin logistic assumption and add log:

n

arg max Z — In [1 + exp (—yi(wal-))]

Yoo



Learn via MLE

1
1 + exp (— yi(wai))

A\

n
W, ‘= arg max 2 In
"=l

Intuitively, w,, tries to explain the label:

mle e
Q: for y; = + 1, what we should expect from v?/,;rd X 7 Do
Q: for y, = — 1, what we should expect from W;lexi ?
®




Learn via MAP
Pw|Y) x PwW)P(2 |w)

We use Gaussian prior, i.e., P(w) = A (0,6°])

arg max In (P(W) H P(y;| x;, w)) = arg max In P(w) + Z In P(y, | x;, w)

=1 =1

n 2
= arg min ( Z In (1 + €Xp(—yi(wai))) + HWHz)

. 202
=1



Comparison to Navie Bayes

1. Logistic regression does not model P(x|y)

2. Gaussian NB leads a linear classifier in the form of
P(y|x) = 1/(1 4+ exp(w 'x))

Gaussian NB is a special case of logistic regression
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We needs to solve the optimization problem

W = arg min Z In [1 + exp (—yi(wai))] + /IHWH%
Yo

) - o’

=£(w)

There is no closed-form solution for the minimizer; luckily, £(w) is convex

We will find an approximate minimizer via gradient descent



Setup for Optimization

We consider minimizing a (convex) function arg min 2 (w)
w

Def of convexity:

Vix,x),a € [0,1], C(ax+ (1 —a)x’) < af(x)+ (1 — a)f(x')
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Global minimizer of a convex function

A convex function has global minimizer which has gradient equal to O




Examples of non-convex functions

Saddle point (Z(x, y) = x% — y?)
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The Gradient Descent algorithm

Goal: minimize £(w)

d

Initialize w' € [

lterate until convergence:

1. Compute gradient ¢’ = VZ(w) |

W=w,

2. Update (GD): w't! = w' — g’

n: learning rate



The Gradient Descent demo




Informal proof for GD convergence

First-order Taylor expansion: for
infinitesimally small o (i.e., 0 — 0), we have

(w—20)=7¢(w)—VEw)'d

Substitute 6 = n VZ(w), withn — 07

£(w = VW) = £(w) - n@W V@

VW3 > 0

..e., w/ sufficiently small 7, GD decrease ob
value if VZ(w) # 0!




How to set learning rate 7 in practice?

Large 7 typically is bad and In theory, for convex loss,
can lead to diverge n = c/\/% guarantees
convergence

L(w)




Let’s summarize by applying GD to logistic regression

Recall the objective for LR;:

min Z In ll + exp (—yi(wal-))] + Alwll3
Y=l

d

Initialize w° € |

lterate until convergence:

exp(—yx; wH(—yx;
p(—=yix; w)(—yx;) NPy

1. Compute gradient g° = Z L+ exp(—yn)

l

2. Update (GD): w't! = w' — g’




