Logistic Regression & convex optimization

Announcements:

This week we will release P3 and HW3

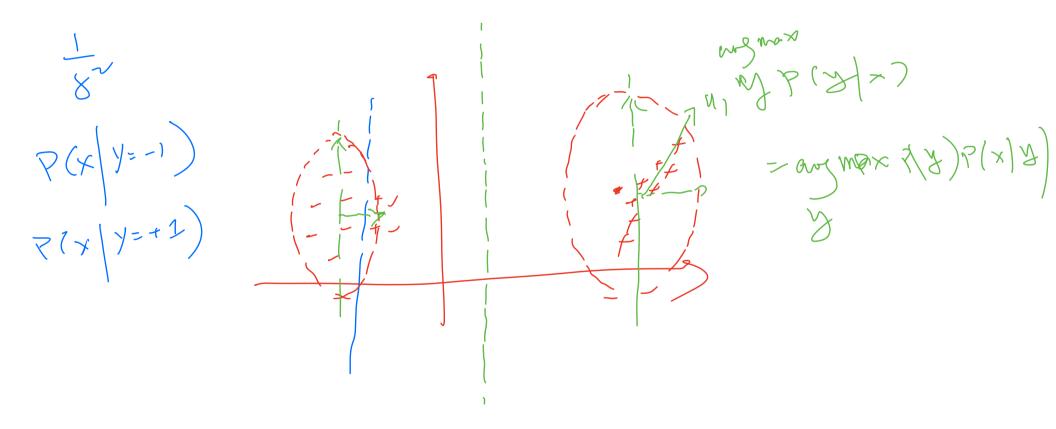
Recap on Naive Bayes

NB is a generative model which models P(x, y)

$$P(y \mid x) \propto P(y)P(x \mid y) = P(y)\prod_{i=1}^{d} P(x[i] \mid y)$$

Conditional independent assumption given label

Perceptron VS Gaussian Naive Bayes



Today

Logistic regression – a **discriminative learning** approach that directly models P(y | x) for classification

Outline for today

1. Logistic Regression

2. Convex optimization

3. Gradient Descent

Logistic Regression Setting: binary classification $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, +1\}$ $\chi \sim P(x)$ y~P(3|x) $f(x-\lambda) = f(x) f(\lambda | x)$

Setting: binary classification $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, +1\}$

(Note, we always assume *x* contains a constant 1)

Setting: binary classification $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P$, $x_i \in \mathbb{R}^d, y_i \in \{-1, +1\}$

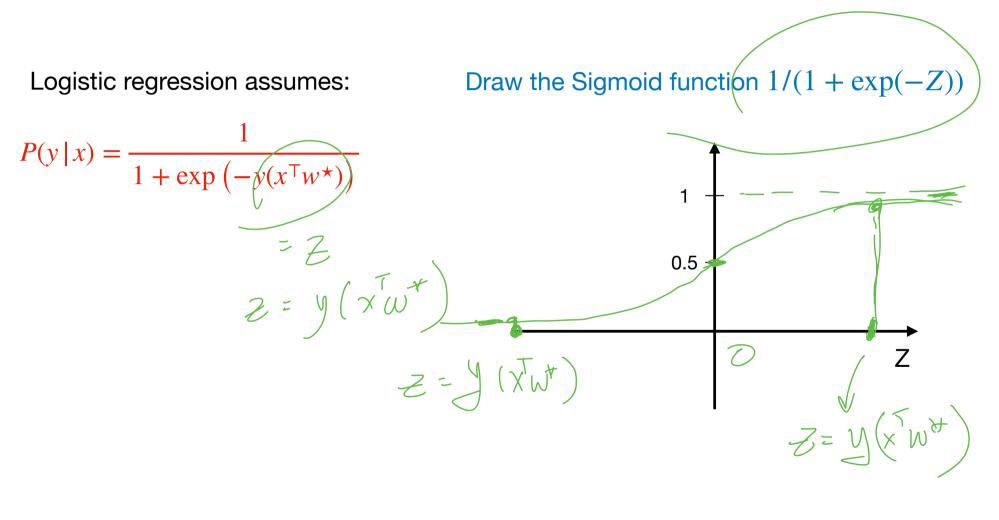
(Note, we always assume x contains a constant 1)

Setting: binary classification $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, +1\}$

(Note, we always assume x contains a constant 1)

Logistic regression **directly models** P(y | x)

$$P(y \mid x) = \frac{1}{1 + \exp\left(-y(x^{\top}w^{\star})\right)}$$

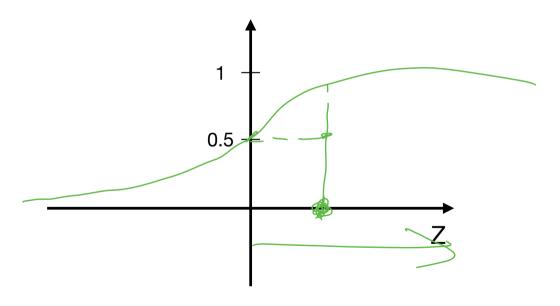


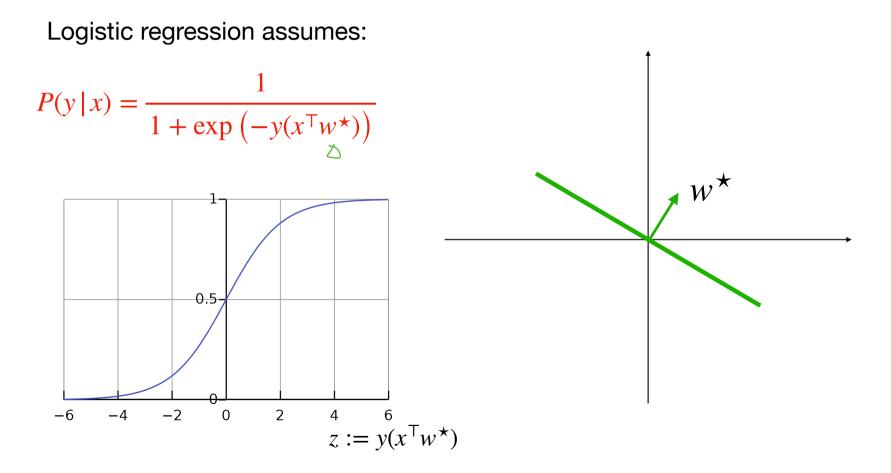
Logistic regression assumes:

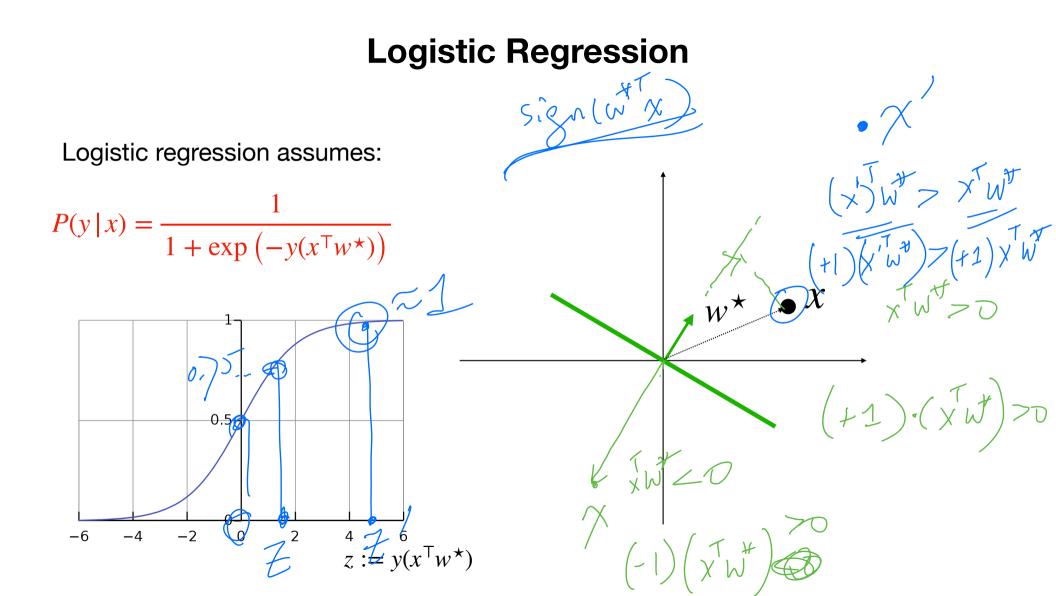
Draw the Sigmoid function $1/(1 + \exp(-Z))$

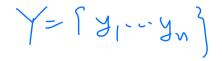
$$P(y \mid x) = \frac{1}{1 + \exp\left(-y(x^{\top}w^{\star})\right)}$$

The model assigns higher prob to $y = \operatorname{sign}(x^{\mathsf{T}}w^{\star})$ $y = y(x^{\mathsf{T}}w^{\star})$





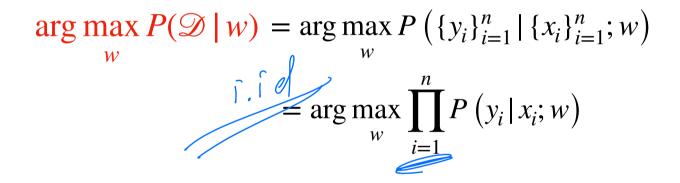




X= { x1- - x~ }

 $\arg \max P(\mathcal{D} | w)$ W $C_{P(D|w)} = P(Y|X_{jw})P(X_{jw})$ $=P(\times)$ = P(Y|x;W)P(X)

$$\arg\max_{w} P(\mathcal{D} \mid w) = \arg\max_{w} P(\{y_i\}_{i=1}^n \mid \{x_i\}_{i=1}^n; w)$$



$$\arg \max_{w} P(\mathcal{D} \mid w) = \arg \max_{w} P\left(\{y_i\}_{i=1}^n \mid \{x_i\}_{i=1}^n; w\right)$$

$$= \arg \max_{w} \prod_{i=1}^n P\left(y_i \mid x_i; w\right) \qquad \mathcal{P}\left(\mathcal{Y}_i \mid \forall_i; w\right)$$

$$= \lim_{w} \Pr\left(-\mathcal{Y}_i\left(\mathcal{X}_i, w\right)\right)$$
Plug in logistic assumption and add log:
$$\arg \max_{w} \sum_{i=1}^n \Pr\left(1 + \exp\left(-\mathcal{Y}_i(w^{\mathsf{T}}x_i)\right)\right)$$

$$\hat{w}_{mle} := \arg\max_{w} \sum_{i=1}^{n} \ln\left[\frac{1}{1 + \exp\left(-y_i(w^{\mathsf{T}}x_i)\right)}\right]$$

Intuitively, \hat{w}_{mle} tries to explain the label:

$$\hat{w}_{mle} := \arg\max_{w} \sum_{i=1}^{n} \ln\left[\frac{1}{1 + \exp\left(-y_i(w^{\mathsf{T}}x_i)\right)}\right]$$

Intuitively, \hat{w}_{mle} tries to explain the label:

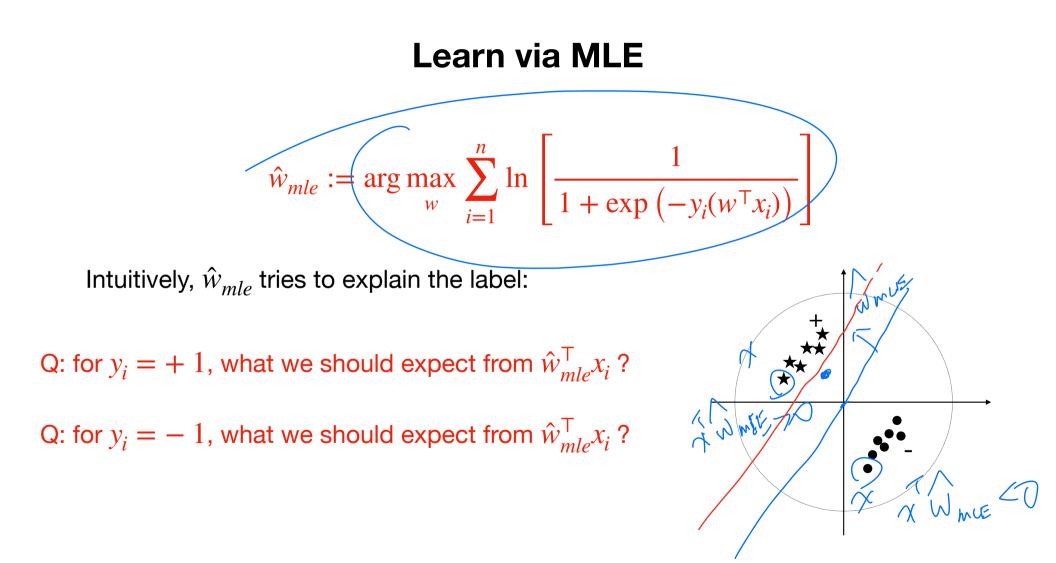
Q: for $y_i = +1$, what we should expect from $\hat{w}_{mle}^{T} x_i$?

$$(\gamma_i)(\widehat{\omega}_{mke} \times i) > 7 D$$

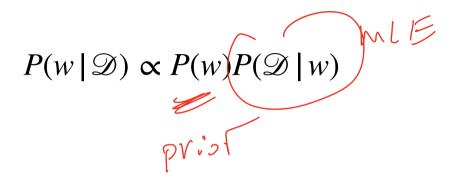
$$\hat{w}_{mle} := \arg\max_{w} \sum_{i=1}^{n} \ln\left[\frac{1}{1 + \exp\left(-y_i(w^{\mathsf{T}}x_i)\right)}\right]$$

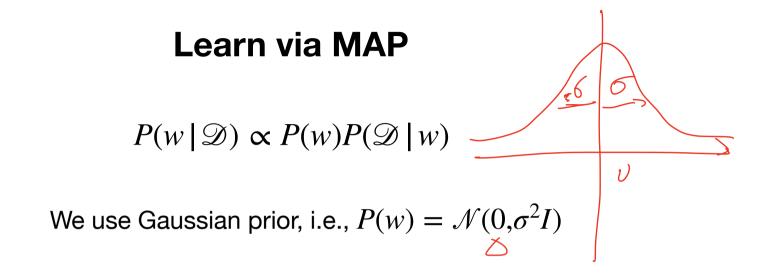
Intuitively, \hat{w}_{mle} tries to explain the label:

Q: for $y_i = +1$, what we should expect from $\hat{w}_{mle}^{\mathsf{T}} x_i$? Q: for $y_i = -1$, what we should expect from $\hat{w}_{mle}^{\mathsf{T}} x_i$?



Learn via MAP





Learn via MAP

 $P(w \mid \mathcal{D}) \propto P(w)P(\mathcal{D} \mid w)$

We use Gaussian prior, i.e., $P(w) = \mathcal{N}(0, \sigma^2 I)$

$$\arg\max_{w} \ln\left(P(w)\prod_{i=1}^{n} P(y_{i} | x_{i}, w)\right) = \arg\max_{w} \ln P(w) + \sum_{i=1}^{n} \ln P(y_{i} | x_{i}, w)$$

Learn via MAP

 $P(w \mid \mathcal{D}) \propto P(w) P(\mathcal{D} \mid w)$

We use Gaussian prior, i.e.,
$$P(w) = \mathcal{N}(0,\sigma^2 I)$$

$$= \arg \max_{w} \ln \left(P(w) \prod_{i=1}^{n} P(y_i | x_i, w) \right) = \arg \max_{w} \ln P(w) + \sum_{i=1}^{n} \ln P(y_i | x_i, w)$$

$$= \arg \min_{w} \left(\sum_{i=1}^{n} \ln \left(1 + \exp(-y_i(w^T x_i)) \right) + \frac{||w||_2^2}{2\sigma^2} \right)$$

$$= \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i))) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) \ln (1 + \exp(-y_i(w^T x_i)) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) + \Pr(w \cup F_{eq}) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) + \Pr(w \cup F_{eq}) + \Pr(w \cup F_{eq}) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) + \Pr(w \cup F_{eq}) + \frac{||w||_2^2}{2\sigma^2} + \Pr(w \cup F_{eq}) +$$

ィ`

Comparison to Navie Bayes

1. Logistic regression does not model P(x | y)

Comparison to Navie Bayes

1. Logistic regression does not model P(x | y)

2. Gaussian NB leads a linear classifier in the form of $P(y|x) = 1/(1 + \exp(w^{\top}x))$

Comparison to Navie Bayes

1. Logistic regression does not model P(x | y)

2. Gaussian NB leads a linear classifier in the form of $P(y|x) = 1/(1 + \exp(w^{\top}x))$

Gaussian NB is a special case of logistic regression

Outline for today

2. Convex optimization

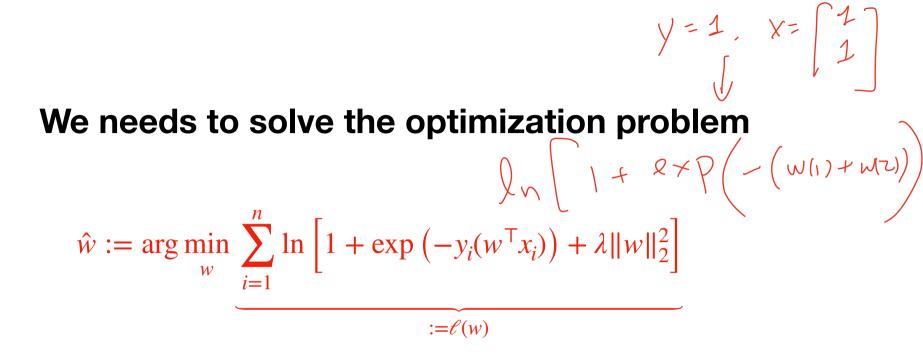
3. Gradient Descent

We needs to solve the optimization problem MLE 4/=0 $\hat{w} := \arg\min_{w} \sum_{i=1}^{n} \ln\left[1 + \exp\left(-y_i(w^{\mathsf{T}}x_i)\right) + \lambda \|w\|_2^2\right]$ $:=\ell(w)$ VIIW) 10 Solve for W

We needs to solve the optimization problem

$$\hat{w} := \arg\min_{w} \underbrace{\sum_{i=1}^{n} \ln\left[1 + \exp\left(-y_{i}(w^{\mathsf{T}}x_{i})\right) + \lambda \|w\|_{2}^{2}\right]}_{:=\ell(w)}$$

There is no closed-form solution for the minimizer; luckily, $\ell(w)$ is convex



There is no closed-form solution for the minimizer; luckily, $\ell(w)$ is convex

We will find an approximate minimizer via gradient descent

Setup for Optimization

We consider minimizing a (convex) function $\arg \min_{w} \ell(w)$

Setup for Optimization

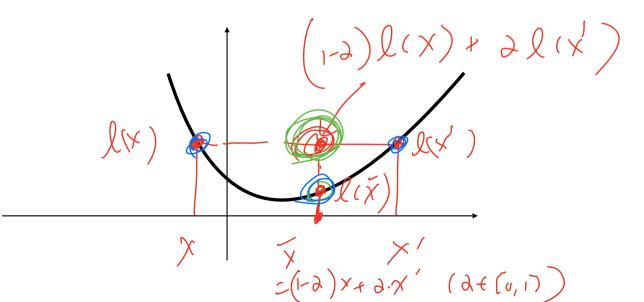
We consider minimizing a (convex) function $\underset{w}{\arg\min \ell(w)}$ Def of convexity:

 $\forall (x, x'), \alpha \in [0, 1], \, \ell(\alpha x + (1 - \alpha)x') \leq \alpha \ell(x) + (1 - \alpha)\ell(x')$

Setup for Optimization

We consider minimizing a (convex) function $\underset{w}{\arg\min \ell(w)}$ Def of convexity:

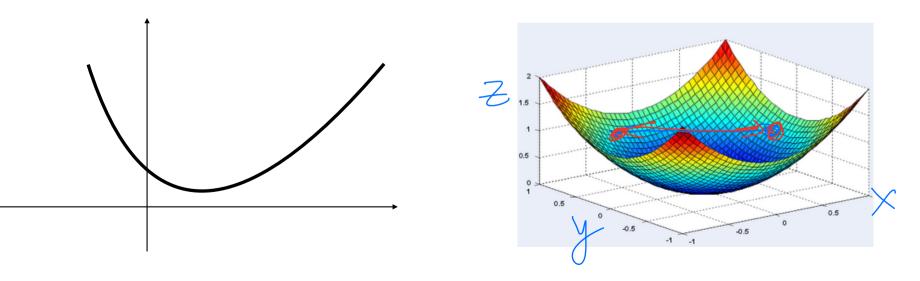
 $\forall (x, x'), \alpha \in [0, 1], \, \ell(\alpha x + (1 - \alpha)x') \le \alpha \ell(x) + (1 - \alpha)\ell(x')$



Setup for Optimization

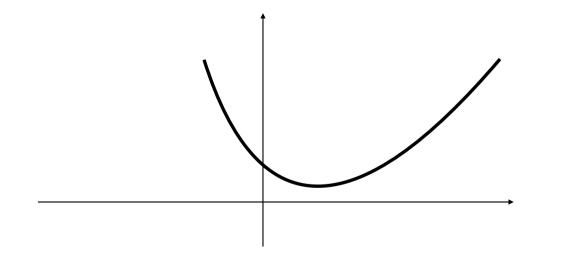
We consider minimizing a (convex) function $\underset{w}{\arg\min \ell(w)}$ Def of convexity:

 $\forall (x, x'), \alpha \in [0, 1], \ \ell(\alpha x + (1 - \alpha)x') \le \alpha \ell(x) + (1 - \alpha)\ell(x') \Big/$

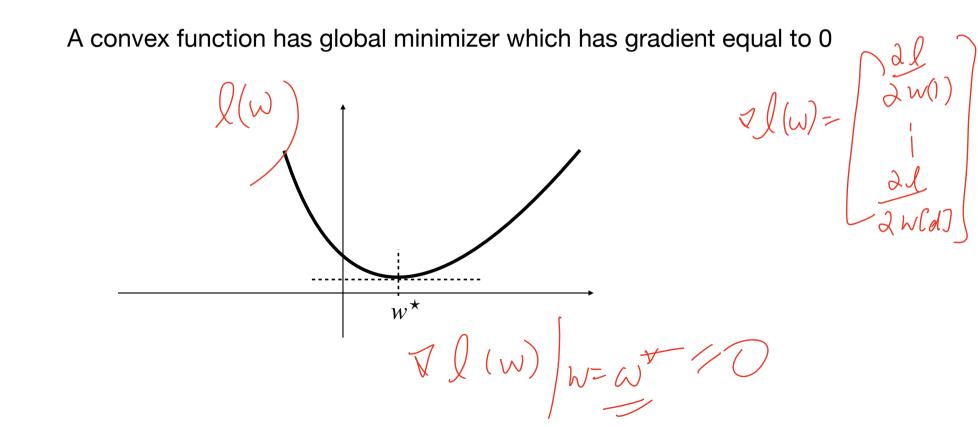


Global minimizer of a convex function

A convex function has global minimizer which has gradient equal to 0

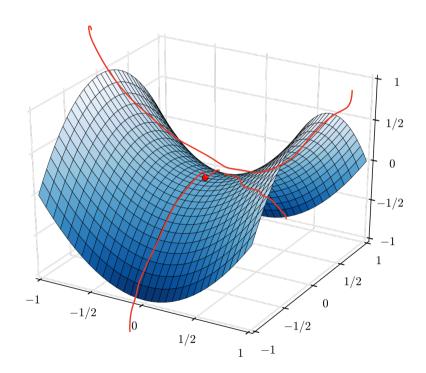


Global minimizer of a convex function

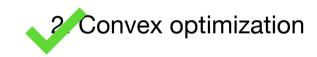


Examples of non-convex functions

Saddle point ($\ell(x, y) = x^2 - y^2$)



Outline for today



3. Gradient Descent

Goal: minimize $\ell(w)$

using (w)

Initialize $w^0 \in \mathbb{R}^d$

Iterate until convergence:

Goal: minimize $\ell(w)$

Initialize $w^0 \in \mathbb{R}^d$

Iterate until convergence:

1. Compute gradient $g^t = \nabla \ell(w) |_{w=w_t}$

Goal: minimize $\ell(w)$

Initialize $w^0 \in \mathbb{R}^d$

Iterate until convergence:

1. Compute gradient $g^t = \nabla \mathcal{E}(w) |_{w=w_t}$ 2. Update (GD): $w^{t+1} = w^t - \eta g^t$

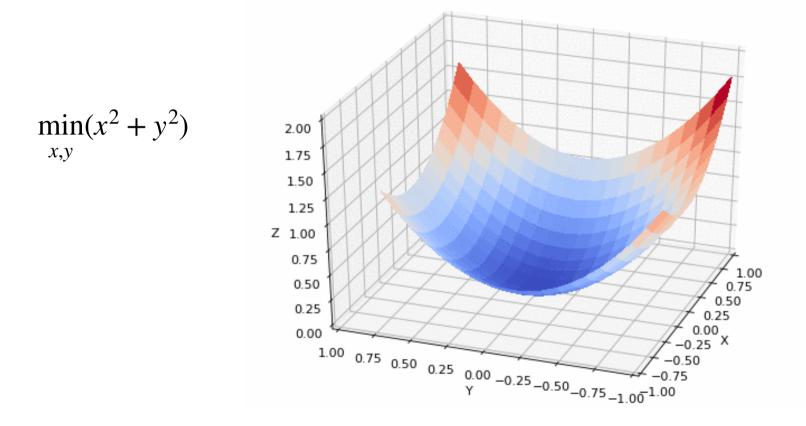
Goal: minimize $\ell(w)$

Initialize $w^0 \in \mathbb{R}^d$

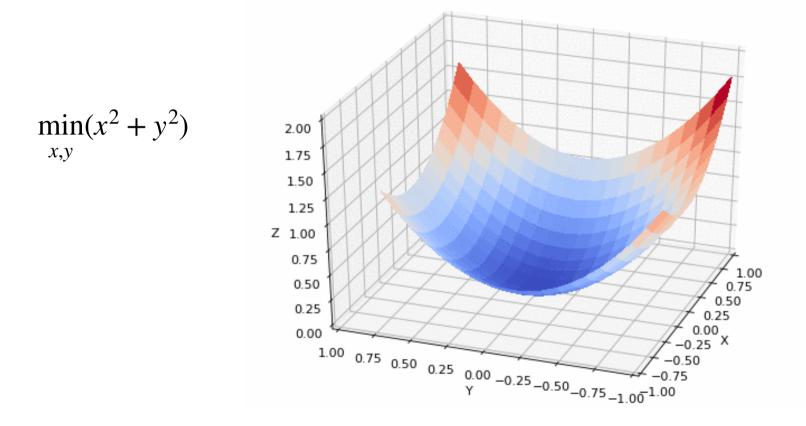
Iterate until convergence:

1. Compute gradient $g^{t} = \nabla \mathcal{E}(w) |_{w=w_{t}}$ 2. Update (GD): $w^{t+1} = w^{t} - \eta g^{t}$ η : learning rate $\mathcal{K} = \mathcal{K} = \mathcal{K} = \mathcal{K}$

The Gradient Descent demo



The Gradient Descent demo



First-order Taylor expansion: for infinitesimally small δ (i.e., $\delta \rightarrow 0$), we have

First-order Taylor expansion: for infinitesimally small δ (i.e., $\delta \to 0$), we have $\ell(w - \delta) = \ell(w) - \nabla \ell(w)^{\mathsf{T}} \delta + \delta = \xi^{\mathsf{T}}$

$$\mathcal{E}(w-\delta) = \mathcal{E}(w) - \nabla \mathcal{E}(w)^{\dagger}\delta + \delta - \delta$$

$$\int_{-\infty}^{\infty} \mathcal{E}(w)$$

First-order Taylor expansion: for infinitesimally small δ (i.e., $\delta \rightarrow 0$), we have

$$\ell(w - \delta) = \ell(w) - \nabla \ell(w)^{\mathsf{T}} \delta$$

Substitute $\delta = \eta \nabla \ell(w)$, with $\eta \to 0^+$

First-order Taylor expansion: for infinitesimally small δ (i.e., $\delta \rightarrow 0$), we have

$$\ell(w - \delta) = \ell(w) - \nabla \ell(w)^{\mathsf{T}} \delta$$

Substitute $\delta = \eta \nabla \ell(w)$, with $\eta \to 0^+$ set $\xi = \eta \nabla \ell(w)$

$$\ell(w - \eta \nabla \ell(w)) = \ell(w) - \eta \nabla \ell(w)^{\mathsf{T}}(\nabla \ell(w))$$

First-order Taylor expansion: for infinitesimally small δ (i.e., $\delta \to 0$), we have

$$\ell(w - \delta) = \ell(w) - \nabla \ell(w)^{\mathsf{T}} \delta$$

Substitute $\delta = \eta \nabla \ell(w)$, with $\eta \to 0^+$

$$\ell(w - \eta \nabla \ell(w)) = \ell(w) - \eta \nabla \ell(w)^{\mathsf{T}}(\nabla \ell(w))$$

 $\|\nabla \ell(w)\|_{2}^{2} > 0$

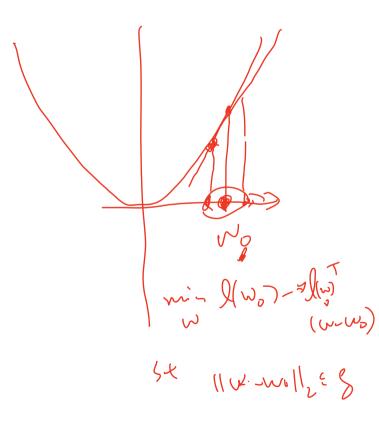
First-order Taylor expansion: for infinitesimally small δ (i.e., $\delta \rightarrow 0$), we have

$$\ell(w - \delta) = \ell(w) - \nabla \ell(w)^{\mathsf{T}} \delta$$

Substitute $\delta = \eta \nabla \ell(w)$, with $\eta \to 0^+$

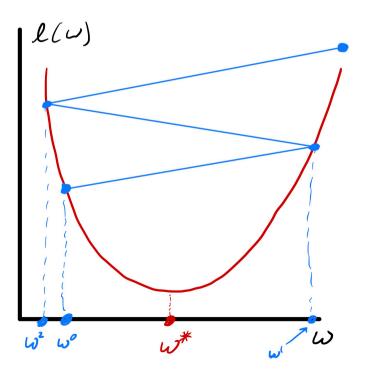
$$\ell(w - \eta \nabla \ell(w)) = \ell(w) - \eta \nabla \ell(w)^{\mathsf{T}}(\nabla \ell(w))$$

i.e., w/ sufficiently small η , GD decrease obj value if $\nabla \ell(w) \neq 0$!

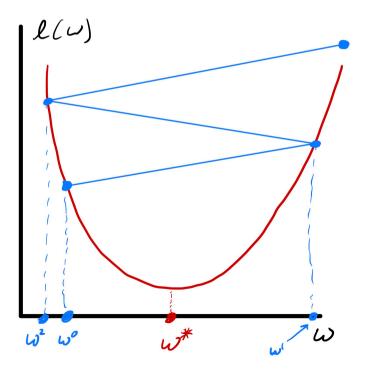


Large η typically is bad and can lead to diverge

Large η typically is bad and can lead to diverge

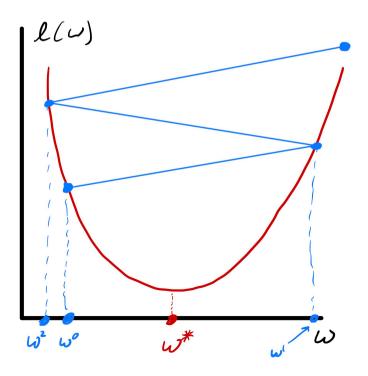


Large η typically is bad and can lead to diverge



In theory, for convex loss, $\eta = c/\sqrt{k}$ guarantees convergence

Large η typically is bad and can lead to diverge



In theory, for convex loss, $\eta = c/\sqrt{k}$ guarantees convergence l(u) W

Let's summarize by applying GD to logistic regression

Recall the objective for LR:

$$\min_{w} \sum_{i=1}^{n} \ln\left[1 + \exp\left(-y_i(w^{\mathsf{T}}x_i)\right)\right] + \lambda \|w\|_2^2$$

Initialize $w^0 \in \mathbb{R}^d$ Iterate until convergence:

Let's summarize by applying GD to logistic regression

Recall the objective for LR:

$$\min_{w} \sum_{i=1}^{n} \ln \left[1 + \exp\left(-y_i(w^{\mathsf{T}}x_i)\right) \right] + \lambda \|w\|_2^2$$

Initialize $w^0 \in \mathbb{R}^d$

Iterate until convergence:

1. Compute gradient
$$g^t = \sum_{i} \frac{\exp(-y_i x_i^{\top} w^t)(-y_i x_i)}{1 + \exp(-y_i x_i^{\top} w^t)} + 2\lambda w^t$$

Let's summarize by applying GD to logistic regression

Recall the objective for LR:

$$\min_{w} \sum_{i=1}^{n} \ln \left[1 + \exp\left(-y_i(w^{\mathsf{T}}x_i)\right) \right] + \lambda \|w\|_2^2$$

Initialize $w^0 \in \mathbb{R}^d$

Iterate until convergence:

1. Compute gradient
$$g^{t} = \sum_{i} \frac{\exp(-y_{i}x_{i}^{\top}w^{t})(-y_{i}x_{i})}{1 + \exp(-y_{i}x_{i}^{\top}w^{t})} + 2\lambda w^{t}$$

2. Update (GD): $w^{t+1} = w^{t} - \eta g^{t}$