
Kernel

Announcements

HW5 and P5 are released (due in one week)

Objective today (and next Tuesday)
Use kernels to design nonlinear ML models (regression & classification)

Goal: Non-
linear decision

boundary

Our
approach

Outline

1. A new perspective on ridge linear regression

2. Feature mapping and Kernel

3. Kernel trick and demo of kernel regression

Linear regression revisited

Dataset 𝒟 = {xi, yi}, xi ∈ ℝd, yi ∈ ℝ

Ridge Linear regression solves the following problem:

arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

Closed-form solution exists, i.e.,

ŵ = (XX⊤ + λI)−1XY

Linear regression revisited

Claim: ŵ = (XX⊤ + λI)−1XY ∈ Span(X)

An intuitive proof: GD (or SGD)

w0 = 0, wt+1 = wt − η [
n

∑
i=1

(x⊤
i wt − yi)xi + λwt]

A new perspective of linear regression

Since we know optimal solution lives in , we can re-parameterize span(X)

w =
n

∑
i=1

αixi = Xα, αi ∈ ℝ, ∀i

arg min
w

n

∑
i=1

X⊤w − Y
2

2 + λ∥w∥2
2

Original formulation

arg min
α

X⊤Xα − Y
2

2 + ∥Xα∥2
2

New formulation w/ as our variablesα

A new perspective of linear regression

arg min
α

X⊤Xα − Y
2

2 + λ∥Xα∥2
2

Solution:

α = (X⊤X + λI)−1 Y ∈ ℝn

X⊤X ∈ ℝn×n, (X⊤X)i,j = x⊤
i xj = ⟨xi, xj⟩

A new perspective of linear regression

When we make prediction on a test example , we have:x ∈ ℝd

ŵ⊤x = (
n

∑
i=1

αixi)⊤x =
n

∑
i=1

αi ⋅ ⟨xi, x⟩

Notice a theme here:

Linear regression can be done by just using inner product of features
⟨x, z⟩, x ∈ ℝd, z ∈ ℝd

Outline

1. A new perspective on ridge linear regression

2. Feature mapping and Kernel

3. Kernel trick and demo of kernel regression

Feature mapping

Define as a feature mapping (often)ϕ(x) ∈ ℝm m > d

Ex 1: x ∈ ℝ, ϕ(x) = [x, x2]⊤ ∈ ℝ2

x

x2

Feature mapping

Define as a feature mapping (often)ϕ(x) ∈ ℝm m > d

Ex 2: quadratic
feature mapping ϕ

x = [x1, x2]⊤,

ϕ(x) = [1,x1, x2, x2
1 , x2

2 , x1x2]⊤

Feature mapping

Define as a feature mapping (often)ϕ(x) ∈ ℝm m > d

Ex 2: cubic feature
mapping ϕ

x = [x1, x2]⊤,

ϕ(x) = [1,x1, x2, x2
1 , x2

2 , x1x2, x3
1 , x3

2 , x1x2
2 , x2

1 x2]⊤

Q: in general, for and a p-th
order polynomial feature , what’s

the dimension of ?

x ∈ ℝd,
ϕ

ϕ(x)

at least (d
p)

Dim of can be very large!ϕ(x)

Fit linear functions in the high-dim feature space

The feature mapping allows us to perform linear regression in the spaceϕ(x) ∈ ℝm ϕ

Ex: cubic feature mapping ϕ

x = [x1, x2]⊤, ϕ(x) = [1,x1, x2, x2
1 , x2

2 , x1x2, x3
1 , x3

2 , x1x2
2 , x2

1 x2]⊤

 now can represent a 3-order polynomials!w⊤ϕ(x)

To fit a 3-order polynomial in , we can instead do linear regression in x ϕ(x)

Fit linear functions in the high-dim feature space

Perform linear regression in space, i.e., ϕ

min
w

n

∑
i=1

(w⊤ϕ(xi) − yi)2 + λ∥w∥2
2

Linear in , but high-order poly in ϕ x

What is the potential problem of doing this?

This is where the new perspective of linear regression and kernels come to rescue!

Kernel

Kernel k(x, z)

Q: what’s the computation of ?k(x, z)

Generalizing to p-th order polynomials:
k(x, z) = (x⊤z + 1)p

Ex: quadratic kernel

k(x, z) = (x⊤z + 1)2
k(x, z) = (x⊤z + 1)3

Ex: cubic feature mapping ϕ

ϕ(x) = [1, 2x1, 2x2, x2
1 , x2

2 , 2x1x2]⊤

A valid kernel is a kernel such that , ∃ϕ k(x, z) = ϕ(x)⊤ϕ(z), ∀x, z

Q: what’s the computation of ?ϕ(x)⊤ϕ(z)

Kernel

Gaussian Kernel: k(x, z) = exp (−∥x − z∥2
2/σ2)

The mapping is infinite-dimensionalϕ(x)

Ex: , the mapping : x ∈ ℝ ϕ(x)

ϕ(x) = …,
1

i!
exp (−

x2

2σ2) xi, …

⊤

∈ ℝ∞

Kernel

Gaussian Kernel: k(x, z) = exp (−∥x − z∥2
2/σ2)

2. Linear function can model any indefinitely differentiable function w⊤ϕ(x) f

Why? contains all polynomials, and can be written as
an infinite Taylor series..

ϕ f

Summary so far

1. Feature mapping lifts into high-dimensional space (e.g., high-order polynomials)ϕ(x) x

2. A kernel is a symmetric function, such that there exists a , so that k(x, z) ϕ
k(x, z) = ϕ(x)⊤ϕ(z)

3. Kernel allows us to compute without ever explicitly computing ⟨ϕ(x), ϕ(z)⟩ ϕ

(is easy to compute but is hard to compute)k(x, z) ⟨ϕ(x), ϕ(z)⟩

Outline

1. A new perspective on ridge linear regression

2. Feature mapping and Kernel

3. Kernel trick and demo of kernel regression

Recall linear regression can be done by just
using inner product of two features!

Kernel Trick

We wanted to do linear regression in the new features , ϕ(x1), …, ϕ(xn)

BUT, can be very high-dim or even infinite-dim….ϕ(x)

The kernel trick

A recipe:

1. Write the learning algorithm in terms of ⟨xi, xj⟩

2. Define a kernel (e.g., Gaussian kernel, poly kernel)k(x, z)

3. Replace all operation by ⟨x, z⟩ k(x, z)

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

α = (X⊤X + λI)−1 Y ∈ ℝn

K ∈ ℝn×n, Ki,j = k(xi, xj)

2. Define a kernel, e.g., k(x, z) = exp(−∥x − z∥2
2/σ2)

3. Replace by a kernel matrix KX⊤X

Kernel ridge regression

In test time, recall linear regression makes prediction at :x

̂y =
n

∑
i=1

αi⟨xi, x⟩

Replace it w/ :k(xi, x)

̂y =
n

∑
i=1

αi ⋅ k(xi, x)

Kernel trick enables to do LR in space (possibly infinite
dim) without ever explicitly computing !

ϕ(x)
ϕ(x)

take-home message

