Kernel

HW5 and P5 are released (due in one week)

Announcements

Objective today (and next Tuesday)

1. A new perspective on ridge linear regression

2. Feature mapping and Kernel

3. Kernel trick and demo of kernel regression

Outline

Linear regression revisited

Dataset $\mathcal{D} = \{\mathbf{x}\}$

Ridge Linear regression solves the following problem:

Closed-form solution exists, i.e.,

$$\{x_i, y_i\}, \mathbf{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R}^d$$

$$v^{\mathsf{T}} \mathbf{x}_i - y_i)^2 + \lambda \|w\|_2^2$$

 $\hat{w} = (XX^{\mathsf{T}} + \lambda I)^{-1}XY$

Linear regression revisited

Claim: $\hat{w} = (XX^{\top})$

An intuitive proof: GD (or SGD)

$$w_0 = 0, w^{t+1} = w^t - 1$$

$$(+\lambda I)^{-1}XY \in \text{Span}(X)$$

A new perspective of linear regression

Since we know optimal solution lives in span(X), we can re-parameterize

$$\arg\min_{w} \sum_{i=1}^{n} \| X^{\mathsf{T}}w - Y \|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

Original formulation

 $w = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i = X\alpha, \ \alpha_i \in \mathbb{R}, \forall i$

$\arg\min \left\| X^{\mathsf{T}}X\alpha - Y \right\|_{2}^{2} + \|X\alpha\|_{2}^{2}$

New formulation w/ α as our variables

A new perspective of linear regression

 $\arg\min \| X^{\mathsf{T}} X \|$ α

 $X^{\mathsf{T}}X \in \mathbb{R}^{n \times n}, (X^{\mathsf{T}}X)_{i,i} = \mathbf{x}_i^{\mathsf{T}}\mathbf{x}_i = \langle \mathbf{x}_i, \mathbf{x}_i \rangle$

$$X\alpha - Y \Big\|_{2}^{2} + \lambda \|X\alpha\|_{2}^{2}$$

Solution:

 $\alpha = \left(X^{\mathsf{T}}X + \lambda I\right)^{-1} Y \in \mathbb{R}^n$

A new perspective of linear regression

When we make prediction on a test example $\mathbf{x} \in \mathbb{R}^d$, we have:

$$\hat{w}^{\mathsf{T}}\mathbf{x} = (\sum_{i=1}^{n} \alpha_i \mathbf{x}_i)^{\mathsf{T}}\mathbf{x} = \sum_{i=1}^{n} \alpha_i \cdot \langle \mathbf{x}_i, \mathbf{x} \rangle$$

Notice a theme here:

Linear regression can be done by just using inner product of features $\langle \mathbf{x}, \mathbf{z} \rangle, \mathbf{x} \in \mathbb{R}^d, \mathbf{z} \in \mathbb{R}^d$

1. A new perspective on ridge linear regression

2. Feature mapping and Kernel

3. Kernel trick and demo of kernel regression

Outline

Feature mapping

- Define $\phi(\mathbf{x}) \in \mathbb{R}^m$ as a feature mapping (often m > d)
 - Ex 1: $\mathbf{x} \in \mathbb{R}, \, \phi(\mathbf{x}) = [x, x^2]^\top \in \mathbb{R}^2$

Feature mapping

- Define $\phi(\mathbf{x}) \in \mathbb{R}^m$ as a feature mapping (often m > d)
 - Ex 2: quadratic feature mapping ϕ
 - $\mathbf{x} = [x_1, x_2]^\top,$
 - $\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1 x_2]^{\mathsf{T}}$

Feature mapping

Ex 2: cubic feature mapping ϕ

$$\mathbf{x} = [x_1, x_2]^\top,$$

 $\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1x_2, x_1^3, x_2^3, x_1x_2^2, x_1^2x_2]^{\mathsf{T}}$

Define $\phi(\mathbf{x}) \in \mathbb{R}^m$ as a feature mapping (often m > d)

Q: in general, for $\mathbf{x} \in \mathbb{R}^d$, and a p-th order polynomial feature ϕ , what's the dimension of $\phi(\mathbf{x})$?

at least
$$\begin{pmatrix} d \\ p \end{pmatrix}$$

Dim of $\phi(\mathbf{x})$ can be very large!

Fit linear functions in the high-dim feature space

The feature mapping $\phi(\mathbf{x}) \in \mathbb{R}^m$ allows us to perform linear regression in the ϕ space

- **Ex**: cubic feature mapping ϕ
- $\mathbf{x} = [x_1, x_2]^{\mathsf{T}}, \ \phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1x_2, x_1^3, x_2^3, x_1x_2^2, x_1^2x_2]^{\mathsf{T}}$
 - $w^{\top}\phi(\mathbf{x})$ now can represent a 3-order polynomials!

To fit a 3-order polynomial in **x**, we can instead do linear regression in $\phi(\mathbf{x})$

Fit linear functions in the high-dim feature space

Perform linear regression in ϕ space, i.e.,

$$b(\mathbf{x}_i) - y_i)^2 + \lambda ||w||_2^2$$

- Linear in ϕ , but high-order poly in **x**
- What is the potential problem of doing this?

This is where the new perspective of linear regression and kernels come to rescue!

A valid kernel is a kernel such that $\exists \phi, k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}$

Ex: quadratic kernel

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}}\mathbf{z} + 1)^2$$

$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]^{\mathsf{T}}$

Q: what's the computation of $k(\mathbf{x}, \mathbf{z})$?

Q: what's the computation of $\phi(\mathbf{x})^{\dagger}\phi(\mathbf{z})$?

Kernel

Kernel $k(\mathbf{x}, \mathbf{z})$

Ex: cubic feature mapping ϕ $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}}\mathbf{z} + 1)^3$

Generalizing to p-th order polynomials: $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\mathsf{T}}\mathbf{z} + 1)^p$

Gaussian Kernel: $k(\mathbf{x},$

The mapping $\phi(\mathbf{x})$ is infinite-dimensional

Kernel

$$\mathbf{z}) = \exp\left(-\|\mathbf{x} - \mathbf{z}\|_2^2 / \sigma^2\right)$$

Ex: $\mathbf{x} \in \mathbb{R}$, the mapping $\phi(\mathbf{x})$:

$$\exp\left(-\frac{x^2}{2\sigma^2}\right)x^i,\dots\right]^{\top} \in \mathbb{R}^{\infty}$$

Gaussian Kernel: $k(\mathbf{x},$

Why? ϕ contains all polynomials, and f can be written as an infinite Taylor series...

Kernel

$$\mathbf{z}) = \exp\left(-\|\mathbf{x} - \mathbf{z}\|_2^2 / \sigma^2\right)$$

2. Linear function $w^{\top}\phi(\mathbf{x})$ can model any indefinitely differentiable function f

Summary so far

1. Feature mapping $\phi(\mathbf{x})$ lifts \mathbf{x} into high-dimensional space (e.g., high-order polynomials)

- 3. Kernel allows us to compute $\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$ without ever explicitly computing ϕ $(k(\mathbf{x}, \mathbf{z}) \text{ is easy to compute but } \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$ is hard to compute)
- 2. A kernel $k(\mathbf{x}, \mathbf{z})$ is a symmetric function, such that there exists a ϕ , so that $k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^{\mathsf{T}} \phi(\mathbf{z})$

1. A new perspective on ridge linear regression

2. Feature mapping and Kernel

3. Kernel trick and demo of kernel regression

Outline

Kernel Trick

Recall linear regression can be done by just using inner product of two features!

We wanted to do linear regression in the new features $\phi(\mathbf{x_1}), \ldots, \phi(\mathbf{x_n}),$

- **BUT**, $\phi(\mathbf{x})$ can be very high-dim or even infinite-dim....

The kernel trick

- A recipe:
- 1. Write the learning algorithm in terms of $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$
- 2. Define a kernel $k(\mathbf{x}, \mathbf{z})$ (e.g., Gaussian kernel, poly kernel)

3. Replace all $\langle \mathbf{x}, \mathbf{z} \rangle$ operation by $k(\mathbf{x}, \mathbf{z})$

Kernel ridge regression

- 1. Recall linear regression can be done via just using inner product:
 - $\alpha = \left(X^{\mathsf{T}} X + \lambda I \right)^{-1} Y \in \mathbb{R}^{n}$
 - 2. Define a kernel, e.g., $k(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} \mathbf{z}\|_2^2 / \sigma^2)$
 - 3. Replace $X^T X$ by a kernel matrix K
 - $K \in \mathbb{R}^{n \times n}, K_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j)$

Kernel ridge regression

In test time, recall linear regression makes prediction at **x**:

Replace it w/ $k(\mathbf{x}_i, \mathbf{x})$:

$$\hat{y} = \sum_{i=1}^{n} \alpha_i \cdot k(\mathbf{x}_i, \mathbf{x})$$

take-home message

Kernel trick enables to do LR in $\phi(\mathbf{x})$ space (possibly infinite dim) without ever explicitly computing $\phi(\mathbf{x})$!