
Kernel

 



Objective today

Use kernels to design nonlinear regression & classification models
Goal: Non-

linear decision 
boundary
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Common Kernels

Linear kernel: k(x, z) = x⊤z

Polynomial kernel: k(x, z) = (x⊤z + 1)p

Gaussian kernel (aka RBF): 
k(x, z) = exp (−∥x − z∥2

2/σ2)
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Given any symmetric function , can it be used as a kernel?k(x, z)

s.t., ∃ϕ, k(x, z) = ϕ(x)⊤ϕ(z), ∀x, z

s.t.,  the kernel matrix is PSD∃ϕ, ∀x1, …, xm, K =
k(x1, x2) … k(x1, xm)
k(x2, x1) … k(x2, xm)

… … …
k(xm, x1) … k(xm, xm)
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Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1.  k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

2.  k(x, z) = k1(x, z) + k2(x, z)
3.  k(x, z) = k1(x, z) ⋅ k2(x, z)
4.  k(x, z) = f(x)k1(x, z)f(z)
5.  k(x, z) = exp(k1(x, z))

… (see lecture note)

In class exercise:

Given  being well defined,  k(x, z) = x⊤z

Prove Gaussian kernel  
is well definedexp (−∥x − z∥2

2/σ2)
Hint: 

exp(−x⊤x/σ2) ⋅ exp(2x⊤z/σ2) ⋅ exp(−z⊤z/σ2)
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The kernel trick 

A recipe:

1. Write the learning algorithm in terms of ⟨xi, xj⟩

2. Define a kernel   (e.g., Gaussian kernel, poly kernel)k(x, z)

3. Replace all  operation in the Alg by ⟨x, z⟩ k(x, z)
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Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

α = (X⊤X + λI)−1 Y ∈ ℝn

K ∈ ℝn×n, Ki,j = k(xi, xj)

2. Define a kernel, e.g., k(x, z) = exp( −∥x − z∥2
2/σ2)

3. Replace  by a kernel matrix KX⊤X
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Kernel ridge regression

In test time, recall linear regression makes prediction at :x

̂y =
n

∑
i=1

αi⟨xi, x⟩

Replace it w/ :k(xi, x)

̂y =
n

∑
i=1

αi ⋅ k(xi, x)
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Intuitive proof:



Recall the soft-margin SVM formulation

min
w

∥w∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(w⊤xi)}
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Intuitive proof: ŵ
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A new formulation of soft-margin SVM formulation

Re-parameterize  w =
n

∑
i=1

αixi = Xα

min
α

∥Xα∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

Alg: gradient descent to optimize α ∈ ℝn

∇αℓ(α) = 2X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − η∇αℓ(α) Q: Can we apply kernel trick??
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Kernelized GD for SVM

g = X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − ηg

min
α

∥Xα∥2
2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

While not converged: Replace  by kernel matrix X⊤X K

Pick a well-defined kernel ;k

Replace  by X⊤xi ki =
k(x1, xi)
k(x2, xi)…
k(xn, xi)

Replace 
 g = Kα + C

n

∑
i=1

1{yi(k⊤
i α) ≤ 1}(−yiki)
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Summary for kernel SVM so far

min
α

∥w∥2
2 + C

n

∑
i=1

max {0,1 − yi(w⊤ϕ(xi))}

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e., 

But  can be high-dim (e.g., infinite-dim in Gaussian kernel case)..ϕ

2. Via the re-parameterization step, we see GD can be 
implemented via just using ⟨x, z⟩

3. We apply kernel trick, i.e., replace all  by ⟨x, z⟩ k(x, z)



Take-home message today

Kernel trick allows us to do regression / classification in  space 
(possibly infinite dim) without ever explicitly computing !

ϕ(x)
ϕ(x)


