
Kernel

Objective today

Use kernels to design nonlinear regression & classification models
Goal: Non-

linear decision
boundary

Outline

1. Kernel

2. Kernel trick and Kernel regression

3. Kernel SVM

Common Kernels

Linear kernel: k(x, z) = x⊤z

Common Kernels

Linear kernel: k(x, z) = x⊤z

Polynomial kernel: k(x, z) = (x⊤z + 1)p

Common Kernels

Linear kernel: k(x, z) = x⊤z

Polynomial kernel: k(x, z) = (x⊤z + 1)p

Gaussian kernel (aka RBF):
k(x, z) = exp (−∥x − z∥2

2/σ2)

 Well-defined Kernels

Given any symmetric function , can it be used as a kernel?k(x, z)

 Well-defined Kernels

Given any symmetric function , can it be used as a kernel?k(x, z)

s.t., ∃ϕ, k(x, z) = ϕ(x)⊤ϕ(z), ∀x, z

 Well-defined Kernels

Given any symmetric function , can it be used as a kernel?k(x, z)

s.t., ∃ϕ, k(x, z) = ϕ(x)⊤ϕ(z), ∀x, z

s.t., the kernel matrix is PSD∃ϕ, ∀x1, …, xm, K =
k(x1, x2) … k(x1, xm)
k(x2, x1) … k(x2, xm)

… … …
k(xm, x1) … k(xm, xm)

Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1. k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1. k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

2. k(x, z) = k1(x, z) + k2(x, z)

Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1. k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

2. k(x, z) = k1(x, z) + k2(x, z)
3. k(x, z) = k1(x, z) ⋅ k2(x, z)

Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1. k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

2. k(x, z) = k1(x, z) + k2(x, z)
3. k(x, z) = k1(x, z) ⋅ k2(x, z)
4. k(x, z) = f(x)k1(x, z)f(z)

Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1. k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

2. k(x, z) = k1(x, z) + k2(x, z)
3. k(x, z) = k1(x, z) ⋅ k2(x, z)
4. k(x, z) = f(x)k1(x, z)f(z)
5. k(x, z) = exp(k1(x, z))

Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1. k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

2. k(x, z) = k1(x, z) + k2(x, z)
3. k(x, z) = k1(x, z) ⋅ k2(x, z)
4. k(x, z) = f(x)k1(x, z)f(z)
5. k(x, z) = exp(k1(x, z))

… (see lecture note)

Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1. k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

2. k(x, z) = k1(x, z) + k2(x, z)
3. k(x, z) = k1(x, z) ⋅ k2(x, z)
4. k(x, z) = f(x)k1(x, z)f(z)
5. k(x, z) = exp(k1(x, z))

… (see lecture note)

In class exercise:

Given being well defined, k(x, z) = x⊤z

Prove Gaussian kernel
is well definedexp (−∥x − z∥2

2/σ2)

Construction of well-defined kernels
Kernels built by recursively applying the following one or more rules are well-defined kernels

1. k(x, z) = ck1(x, z), c > 0

Given well-defined k1, k2

2. k(x, z) = k1(x, z) + k2(x, z)
3. k(x, z) = k1(x, z) ⋅ k2(x, z)
4. k(x, z) = f(x)k1(x, z)f(z)
5. k(x, z) = exp(k1(x, z))

… (see lecture note)

In class exercise:

Given being well defined, k(x, z) = x⊤z

Prove Gaussian kernel
is well definedexp (−∥x − z∥2

2/σ2)
Hint:

exp(−x⊤x/σ2) ⋅ exp(2x⊤z/σ2) ⋅ exp(−z⊤z/σ2)

Outline

1. Kernel

2. Kernel trick and Kernel regression

3. Kernel SVM

Kernel Trick

We wanted to do linear regression in the new features , ϕ(x1), …, ϕ(xn)

Kernel Trick

We wanted to do linear regression in the new features , ϕ(x1), …, ϕ(xn)

BUT, can be very high-dim or even infinite-dim….ϕ(x)

Solution: recall linear regression can be done by
just using inner product of two features!

Kernel Trick

We wanted to do linear regression in the new features , ϕ(x1), …, ϕ(xn)

BUT, can be very high-dim or even infinite-dim….ϕ(x)

The kernel trick

A recipe:

The kernel trick

A recipe:

1. Write the learning algorithm in terms of ⟨xi, xj⟩

The kernel trick

A recipe:

1. Write the learning algorithm in terms of ⟨xi, xj⟩

2. Define a kernel (e.g., Gaussian kernel, poly kernel)k(x, z)

The kernel trick

A recipe:

1. Write the learning algorithm in terms of ⟨xi, xj⟩

2. Define a kernel (e.g., Gaussian kernel, poly kernel)k(x, z)

3. Replace all operation in the Alg by ⟨x, z⟩ k(x, z)

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

α = (X⊤X + λI)−1 Y ∈ ℝn

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

α = (X⊤X + λI)−1 Y ∈ ℝn

2. Define a kernel, e.g., k(x, z) = exp(−∥x − z∥2
2/σ2)

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

α = (X⊤X + λI)−1 Y ∈ ℝn

2. Define a kernel, e.g., k(x, z) = exp(−∥x − z∥2
2/σ2)

3. Replace by a kernel matrix KX⊤X

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

α = (X⊤X + λI)−1 Y ∈ ℝn

K ∈ ℝn×n, Ki,j = k(xi, xj)

2. Define a kernel, e.g., k(x, z) = exp(−∥x − z∥2
2/σ2)

3. Replace by a kernel matrix KX⊤X

Kernel ridge regression

In test time, recall linear regression makes prediction at :x

̂y =
n

∑
i=1

αi⟨xi, x⟩

Kernel ridge regression

In test time, recall linear regression makes prediction at :x

̂y =
n

∑
i=1

αi⟨xi, x⟩

Replace it w/ :k(xi, x)

Kernel ridge regression

In test time, recall linear regression makes prediction at :x

̂y =
n

∑
i=1

αi⟨xi, x⟩

Replace it w/ :k(xi, x)

̂y =
n

∑
i=1

αi ⋅ k(xi, x)

Demo
Training data is generated as follows: , x ∼ uniform[0,10]

y = sin(xπ/2) + ϵ, ϵ ∼ .(0,0.1)

Demo
Training data is generated as follows: , x ∼ uniform[0,10]

y = sin(xπ/2) + ϵ, ϵ ∼ .(0,0.1)

Outline

1. Kernel

2. Kernel trick and Kernel regression

3. Kernel SVM

Recall the soft-margin SVM formulation

min
w

∥w∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(w⊤xi)}

Recall the soft-margin SVM formulation

min
w

∥w∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(w⊤xi)}

Claim: the optimal solution is also in ŵ span(X)

Recall the soft-margin SVM formulation

min
w

∥w∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(w⊤xi)}

Claim: the optimal solution is also in ŵ span(X)

Intuitive proof:

Recall the soft-margin SVM formulation

min
w

∥w∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(w⊤xi)}

Claim: the optimal solution is also in ŵ span(X)

Intuitive proof: ŵ

A new formulation of soft-margin SVM formulation

Re-parameterize w =
n

∑
i=1

αixi = Xα

A new formulation of soft-margin SVM formulation

Re-parameterize w =
n

∑
i=1

αixi = Xα

min
α

∥Xα∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

A new formulation of soft-margin SVM formulation

Re-parameterize w =
n

∑
i=1

αixi = Xα

min
α

∥Xα∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

Alg: gradient descent to optimize α ∈ ℝn

A new formulation of soft-margin SVM formulation

Re-parameterize w =
n

∑
i=1

αixi = Xα

min
α

∥Xα∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

Alg: gradient descent to optimize α ∈ ℝn

∇αℓ(α) = 2X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

A new formulation of soft-margin SVM formulation

Re-parameterize w =
n

∑
i=1

αixi = Xα

min
α

∥Xα∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

Alg: gradient descent to optimize α ∈ ℝn

∇αℓ(α) = 2X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − η∇αℓ(α)

A new formulation of soft-margin SVM formulation

Re-parameterize w =
n

∑
i=1

αixi = Xα

min
α

∥Xα∥2
2/2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

Alg: gradient descent to optimize α ∈ ℝn

∇αℓ(α) = 2X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − η∇αℓ(α) Q: Can we apply kernel trick??

Kernelized GD for SVM

g = X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − ηg

min
α

∥Xα∥2
2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

While not converged:

Kernelized GD for SVM

g = X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − ηg

min
α

∥Xα∥2
2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

While not converged:

Pick a well-defined kernel ;k

Kernelized GD for SVM

g = X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − ηg

min
α

∥Xα∥2
2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

While not converged: Replace by kernel matrix X⊤X K

Pick a well-defined kernel ;k

Kernelized GD for SVM

g = X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − ηg

min
α

∥Xα∥2
2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

While not converged: Replace by kernel matrix X⊤X K

Pick a well-defined kernel ;k

Replace by X⊤xi ki =
k(x1, xi)
k(x2, xi)…
k(xn, xi)

Kernelized GD for SVM

g = X⊤Xα + C
n

∑
i=1

1{yi(x⊤
i Xα) ≤ 1}(−yiX⊤xi)

α′ = α − ηg

min
α

∥Xα∥2
2 + C

n

∑
i=1

max {0,1 − yi(x⊤
i Xα)}

While not converged: Replace by kernel matrix X⊤X K

Pick a well-defined kernel ;k

Replace by X⊤xi ki =
k(x1, xi)
k(x2, xi)…
k(xn, xi)

Replace
 g = Kα + C

n

∑
i=1

1{yi(k⊤
i α) ≤ 1}(−yiki)

Summary for kernel SVM so far

min
α

∥w∥2
2 + C

n

∑
i=1

max {0,1 − yi(w⊤ϕ(xi))}

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e.,

Summary for kernel SVM so far

min
α

∥w∥2
2 + C

n

∑
i=1

max {0,1 − yi(w⊤ϕ(xi))}

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e.,

But can be high-dim (e.g., infinite-dim in Gaussian kernel case)..ϕ

Summary for kernel SVM so far

min
α

∥w∥2
2 + C

n

∑
i=1

max {0,1 − yi(w⊤ϕ(xi))}

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e.,

But can be high-dim (e.g., infinite-dim in Gaussian kernel case)..ϕ

2. Via the re-parameterization step, we see GD can be
implemented via just using ⟨x, z⟩

Summary for kernel SVM so far

min
α

∥w∥2
2 + C

n

∑
i=1

max {0,1 − yi(w⊤ϕ(xi))}

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e.,

But can be high-dim (e.g., infinite-dim in Gaussian kernel case)..ϕ

2. Via the re-parameterization step, we see GD can be
implemented via just using ⟨x, z⟩

3. We apply kernel trick, i.e., replace all by ⟨x, z⟩ k(x, z)

Take-home message today

Kernel trick allows us to do regression / classification in space
(possibly infinite dim) without ever explicitly computing !

ϕ(x)
ϕ(x)

