Kernel

Objective today

Use kernels to design nonlinear regression \& classification models

Goal: Nonlinear decision boundary

Data in $\mathrm{R}^{\wedge} 3$ (separable)

Outline

\author{

1. Kernel
}
2. Kernel trick and Kernel regression
3. Kernel SVM

Common Kernels

Linear kernel: $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \quad \underline{\phi}(x)=x$

Common Kernels

Linear kernel: $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z}$
Polynomial kernel: $k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{p} \longrightarrow \phi(x)=$

Common Kernels

Linear kernel: $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z}$

Polynomial kernel: $k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{p}$

Gaussian kernel (aka RBF):

$$
x=z \quad 1
$$

$$
k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)
$$

$$
\begin{aligned}
&\|x-z\|_{2}^{2} \rightarrow+\infty \\
& \exp \left(--^{+} \infty\right) \rightarrow 0
\end{aligned}
$$

Well-defined Kernels

Given any symmetric function $k(\mathbf{x}, \mathbf{z})$, can it be used as a kernel?

$$
k(x, z)=K(z, x)
$$

Well-defined Kernels

Given any symmetric function $k(\mathbf{x}, \mathbf{z})$, can it be used as a kernel?

$$
\exists \phi, \text { s.t., } k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}
$$

Well-defined Kernels

Given any symmetric function $k(\mathbf{x}, \mathbf{z})$, can it be used as a kernel?

$$
\exists \phi, \text { s.t., } k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}
$$

Construction of well-defined kernels

Kernels built by recursively applying the following one or more rules are well-defined kernels
Given well-defined k_{1}, k_{2}

1. $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z}), c>0$

Construction of well-defined kernels

Kernels built by recursively applying the following one or more rules are well-defined kernels
Given well-defined k_{1}, k_{2}

1. $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z}), c>0$
2. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$

Construction of well-defined kernels

Kernels built by recursively applying the following one or more rules are well-defined kernels
Given well-defined k_{1}, k_{2}

1. $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z}), c>0$
2. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$
3. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) \cdot k_{2}(\mathbf{x}, \mathbf{z})$

Construction of well-defined kernels

Kernels built by recursively applying the following one or more rules are well-defined kernels
Given well-defined k_{1}, k_{2}

1. $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z}), c>0$
2. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$
3. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) \cdot k_{2}(\mathbf{x}, \mathbf{z})$
4. $k(\mathbf{x}, \mathbf{z})=f(\mathbf{x}) k_{1}(\mathbf{x}, \mathbf{z}) f(\mathbf{z})$
$(\underbrace{f(x) \phi_{1}(x)}_{\varphi^{\prime}(x)})^{\top}\left(f(z) \phi_{1}(z)\right)$

Construction of well-defined kernels

Kernels built by recursively applying the following one or more rules are well-defined kernels
Given well-defined k_{1}, k_{2}

1. $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z}), c>0$
2. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$
3. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) \cdot k_{2}(\mathbf{x}, \mathbf{z})$
4. $k(\mathbf{x}, \mathbf{z})=f(\mathbf{x}) k_{1}(\mathbf{x}, \mathbf{z}) f(\mathbf{z})$
5. $k(\mathbf{x}, \mathbf{z})=\exp \left(k_{1}(\mathbf{x}, \mathbf{z})\right)$

Construction of well-defined kernels

Kernels built by recursively applying the following one or more rules are well-defined kernels
Given well-defined k_{1}, k_{2}

1. $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z}), c>0$
2. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$
3. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) \cdot k_{2}(\mathbf{x}, \mathbf{z})$
4. $k(\mathbf{x}, \mathbf{z})=f(\mathbf{x}) k_{1}(\mathbf{x}, \mathbf{z}) f(\mathbf{z})$
5. $k(\mathbf{x}, \mathbf{z})=\exp \left(k_{1}(\mathbf{x}, \mathbf{z})\right)$
... (see lecture note)

Construction of well-defined kernels

Kernels built by recursively applying the following one or more rules are well-defined kernels

Given well-defined k_{1}, k_{2}

1. $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z}), c>0$
2. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$
3. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) \cdot k_{2}(\mathbf{x}, \mathbf{z})$
4. $k(\mathbf{x}, \mathbf{z})=f(\mathbf{x}) k_{1}(\mathbf{x}, \mathbf{z}) f(\mathbf{z})$
5. $k(\mathbf{x}, \mathbf{z})=\exp \left(k_{1}(\mathbf{x}, \mathbf{z})\right)$
... (see lecture note)

In class exercise:
Given $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z}$ being well defined,
Prove Gaussian kernel
$\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)$ is well defined

Construction of well-defined kernels $\exp \left(-x^{\top} z\right)$

Kernels built by recursively applying the following one or more rules are well-defined kernels

Given well-defined k_{1}, k_{2}

1. $k(\mathbf{x}, \mathbf{z})=c k_{1}(\mathbf{x}, \mathbf{z}), c>0$
2. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$
3. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) \cdot k_{2}(\mathbf{x}, \mathbf{z})$
4. $k(\mathbf{x}, \mathbf{z})=f(\mathbf{x}) k_{1}(\mathbf{x}, \mathbf{z}) f(\mathbf{z})$
5. $k(\mathbf{x}, \mathbf{z})=\exp \left(k_{1}(\mathbf{x}, \mathbf{z})\right)$
... (see lecture note)

In class exercise:
Given $k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z}$ being well defined,

Outline

\author{

1. Kernel
}
2. Kernel trick and Kernel regression
3. Kernel SVM

Kernel Trick

We wanted to do linear regression in the new features $\phi\left(\mathbf{x}_{1}\right), \ldots, \phi\left(\mathbf{x}_{\mathbf{n}}\right)$,

Kernel Trick

We wanted to do linear regression in the new features $\phi\left(\mathbf{x}_{1}\right), \ldots, \phi\left(\mathbf{x}_{\mathbf{n}}\right)$,

BUT, $\phi(\mathbf{x})$ can be very high-dim or even infinite-dim....

Kernel Trick

We wanted to do linear regression in the new features $\phi\left(\mathbf{x}_{1}\right), \ldots, \phi\left(\mathbf{x}_{\mathbf{n}}\right)$,

BUT, $\phi(\mathbf{x})$ can be very high-dim or even infinite-dim....

Solution: recall linear regression can be done by just using inner product of two features!

The kernel trick

A recipe:

The kernel trick

A recipe:

1. Write the learning algorithm in terms of $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$

The kernel trick

A recipe:

1. Write the learning algorithm in terms of $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$
2. Define a kernel $k(\mathbf{x}, \mathbf{z})$ (e.g., Gaussian kernel, poly kernel)

The kernel trick

A recipe:

1. Write the learning algorithm in terms of $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$
2. Define a kernel $k(\mathbf{x}, \mathbf{z})$ (e.g., Gaussian kernel, poly kernel)
3. Replace all $\langle\mathbf{x}, \mathbf{z}\rangle$ operation in the Aig by $k(\mathbf{x}, \mathbf{z})$

$$
e x P-\frac{\|x-z\| v^{2}}{\gamma 2}
$$

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

$$
\begin{aligned}
& \alpha=\left(X^{\top} X+\lambda I\right)^{-1} Y \in \mathbb{R}^{n} \\
& \omega=\sum_{i=1}^{n} \alpha_{i} x_{i} \\
& \left\|X^{\top} w-y\right\|_{2}^{2}+\lambda\|w\|_{2}^{2} \\
& \Leftrightarrow\left\|X_{\Delta}^{\top} \times \alpha-y\right\|_{2}^{2}+\lambda\|\times \alpha\|_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =X 2 \\
& X=\left[\begin{array}{ccc}
1 & & 1 \\
x_{1} & \cdots & x_{n} \\
1 & 1
\end{array}\right] \\
& \in R^{d \times n}
\end{aligned}
$$

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

$$
\alpha=\left(X^{\top} X+\lambda I\right)^{-1} Y \in \mathbb{R}^{n}
$$

2. Define a kernel, e.g., $k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)$

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

$$
\alpha=\left(X^{\top} X+\lambda I\right)^{-1} Y \in \mathbb{R}^{n}
$$

2. Define a kernel, e.g., $k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)$

Kernel ridge regression

1. Recall linear regression can be done via just using inner product:

$$
\alpha=\left(X^{\top} X+\lambda I\right)^{-1} Y \in \mathbb{R}^{n}
$$

2. Define a kernel, e.g., $k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)$
3. Replace $X^{\top} X$ by a kernel matrix K

Kernel ridge regression

In test time, recall linear regression makes prediction at \mathbf{x} :

$$
\hat{y}=\sum_{i=1}^{n} \alpha_{i}\langle\underbrace{\omega}_{\left.\mathbf{x}_{i}, \mathbf{x}\right\rangle} \quad \begin{array}{c}
\omega_{i=1}^{\top} x \\
\omega^{\top} x
\end{array} \alpha_{i} x_{i}
$$

Kernel ridge regression

In test time, recall linear regression makes prediction at \mathbf{x} :

$$
\hat{y}=\sum_{i=1}^{n} \alpha_{l}\langle\underbrace{\text { R }}_{\text {Replace it w/ } \left.\mathrm{w}\left(\mathbf{x}_{i}, \mathbf{x}\right\rangle\right): ~}
$$

Kernel ridge regression

In test time, recall linear regression makes prediction at \mathbf{x} :

$$
\hat{y}=\sum_{i=1}^{n} \alpha_{\lambda}\left\langle\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle\right.
$$

Replace it w/ $k\left(\mathbf{x}_{i}, \mathbf{x}\right)$:

$$
\hat{y}=\sum_{i=1}^{n} \alpha_{i} \cdot k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

Demo

Training data is generated as follows $: \not \subset \sim$ uniform $[0,10]$,

$$
y=\sin (x \pi / 2)+\underset{o}{\epsilon, \epsilon \sim \mathcal{N}(0,0.1)}
$$

Demo

Training data is generated as follows: $x \sim$ uniform[0,10],

$$
y=\sin (x \pi / 2)+\epsilon, \epsilon \sim \mathcal{N}(0,0.1)
$$

Outline

\author{

1. Kernel
}
2. Kernel trick and Kernel regression
3. Kernel SVM

Recall the soft-margin SVM formulation

$$
\min _{w}\|w\|_{2}^{2} / 2+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} \mathbf{x}_{i}\right)\right\} \quad \text { hinge loss }
$$

Recall the soft-margin SVM formulation

$$
\min _{w}\|w\|_{2}^{2} / 2+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} \mathbf{x}_{i}\right)\right\}
$$

Claim: the optimal solution \hat{w} is also in $\operatorname{span}(X)$

$$
\widehat{\omega}=\sum_{i=1}^{\sum} \alpha_{i} x_{i}
$$

Recall the soft-margin SVM formulation

$$
\min _{w}\|w\|_{2}^{2} / 2+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} \mathbf{x}_{i}\right)\right\}
$$

Claim: the optimal solution \hat{w} is also in $\operatorname{span}(X)$

Intuitive proof:

Recall the soft-margin SVM formulation

$$
\min _{w}\|w\|_{2}^{2} / 2+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} \mathbf{x}_{i}\right)\right\}
$$

Claim: the optimal solution \hat{w} is also in $\operatorname{span}(X)$

Intuitive proof:

A new formulation of soft-margin SVM formulation

$$
\text { Re-parameterize } w=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}=X \alpha<\text { learn } \partial \in R^{n}
$$

Replare ω by $X 2$ in suft-margin SUm ongectile

A new formulation of soft-margin SVM formulation

A new formulation of soft-margin SVM formulation

A new formulation of soft-margin SVM formulation

$$
\begin{gathered}
\text { Re-parameterize } w=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}=X \alpha \\
\min _{\alpha}\|X \alpha\|_{2}^{2} / 2+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\mathbf{x}_{i}^{\top} X \alpha\right)\right\}
\end{gathered}
$$

Alg: gradient descent to optimize $\alpha \in \mathbb{R}^{n}$

$$
\nabla_{\alpha} \ell(\alpha)=X^{\top} X \alpha+C \sum_{i=1}^{n} 1\left\{y_{i}\left(x_{i}^{\top} X \alpha\right) \leq 1\right\}\left(-y_{i} X^{\top} x_{i}\right)
$$

A new formulation of soft-margin SVM formulation

$$
\begin{gathered}
\text { Re-parameterize } w=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}=X \alpha \\
\min _{\alpha}\|X \alpha\|_{2}^{2} / 2+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\mathbf{x}_{i}^{\top} X \alpha\right)\right\}
\end{gathered}
$$

Alg: gradient descent to optimize $\alpha \in \mathbb{R}^{n}$

$$
\begin{gathered}
\nabla_{\alpha} \ell(\alpha)=2 X^{\top} X \alpha+C \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}\left(x_{i}^{\top} X \alpha\right) \leq 1\right\}\left(-y_{i} X^{\top} x_{i}\right) \\
\alpha^{\prime}=\alpha-\eta \nabla_{\alpha} \ell(\alpha)
\end{gathered}
$$

A new formulation of soft-margin SVM formulation

$$
\begin{gathered}
\text { Re-parameterize } w=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}=X \alpha \quad X^{\top} x_{i} \\
\min _{\alpha}\|X \alpha\|_{2}^{2} / 2+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\mathbf{x}_{i}^{\top} X \alpha\right)\right\}=\left[\begin{array}{c}
-x_{i}^{\top}- \\
\vdots \\
-x_{n}^{\top}-
\end{array}\right] x_{i}
\end{gathered}
$$

Alg: gradient descent to optimize $\alpha \in \mathbb{R}^{n}$

$$
\alpha^{\prime}=\alpha-\eta \nabla_{\alpha} \ell(\alpha)
$$

Kernelized GD for SVM

$$
\min _{\alpha}\|X \alpha\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\mathbf{x}_{i}^{\top} X \alpha\right)\right\}
$$

While not converged:

$$
\begin{aligned}
& g=X^{\top} X \alpha+C \sum_{i=1}^{n} 1\left\{y_{i}\left(x_{i}^{\top} X \alpha\right) \leq 1\right\}\left(-y_{i} X^{\top} x_{i}\right) \\
& \alpha^{\prime}=\alpha-\eta g
\end{aligned}
$$

Kernelized GD for SVM

$$
\min _{\alpha}\|X \alpha\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\mathbf{x}_{i}^{\top} X \alpha\right)\right\}
$$

Pick a well-defined kernel k;

$$
\begin{aligned}
& g=X^{\top} X \alpha+C \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}\left(x_{i}^{\top} X \alpha\right) \leq 1\right\}\left(-y_{i} X^{\top} x_{i}\right) \\
& \alpha^{\prime}=\alpha-\eta g
\end{aligned}
$$

Kernelized GD for SVM

$$
\min _{\alpha}\|X \alpha\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\mathbf{x}_{i}^{\top} X \alpha\right)\right\}
$$

Pick a well-defined kernel k;
Replace $X^{\top} X$ by kernel matrix K

Kernelized GD for SVM

$$
\min _{\alpha}\|X \alpha\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\mathbf{x}_{i}^{\top} X \alpha\right)\right\}
$$

Pick a well-defined kernel k;

While not converged:

Replace $X^{\top} X$ by kernel matrix K

Kernelized GD for SVM

$$
\min _{\alpha}\|X \alpha\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(\mathbf{x}_{i}^{\top} X \alpha\right)\right\}
$$

Pick a well-defined kernel k;

While not converged:

$$
\begin{aligned}
& g=X^{\top} X \alpha+C \sum_{i=1}^{n} \mathbb{1}\left\{y_{i}\left(x_{i}^{\top} X \alpha\right) \leq 1\right\}\left(-y_{i} X^{\top} x_{i}\right) \\
& \alpha^{\prime}=\alpha-\eta g
\end{aligned}
$$

Replace $X^{\top} X$ by kernel matrix K
Replace $X^{\top} \mathbf{x}_{i}$ by $\mathbf{k}_{i}=\left[\begin{array}{c}k\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{i}}\right) \\ k\left(\mathbf{x}_{2}, \mathbf{x}_{\mathbf{i}}\right) \\ \ldots \\ k\left(\mathbf{x}_{n}, \mathbf{x}_{\mathbf{i}}\right)\end{array}\right]$
Replace

Summary for kernel SVM so far

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e.,

$$
\min _{\alpha}\|w\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} \phi\left(x_{i}\right)\right)\right\}
$$

Summary for kernel SVM so far

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e.,

$$
\min _{\alpha}\|w\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} \phi\left(x_{i}\right)\right)\right\}
$$

But ϕ can be high-dim (e.g., infinite-dim in Gaussian kernel case)..

Summary for kernel SVM so far

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e.,

$$
\min _{\alpha}\|w\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} \phi\left(x_{i}\right)\right)\right\}
$$

But ϕ can be high-dim (e.g., infinite-dim in Gaussian kernel case)..
2. Via the re-parameterization step, we see GD can be implemented via just using $\langle\mathbf{x}, \mathbf{z}\rangle$

Summary for kernel SVM so far

1. Ideally, want to do the SVM in the lifted high-dim feature space, i.e.,

$$
\min _{\alpha}\|w\|_{2}^{2}+C \sum_{i=1}^{n} \max \left\{0,1-y_{i}\left(w^{\top} \phi\left(x_{i}\right)\right)\right\}
$$

But ϕ can be high-dim (e.g., infinite-dim in Gaussian kernel case)..
2. Via the re-parameterization step, we see GD can be implemented via just using $\langle\mathbf{x}, \mathbf{z}\rangle$
3. We apply kernel trick, i.e., replace all $\langle\mathbf{x}, \mathbf{z}\rangle$ by $k(\mathbf{x}, \mathbf{z})$

Take-home message today

Kernel trick allows us to do regression / classification in $\phi(\mathbf{x})$ space (possibly infinite dim) without ever explicitly computing $\phi(\mathbf{x})$!

