Kernel

Announcements

HW5 and P5 are released (due in one week)

Objective today (and next Tuesday)

Use kernels to design nonlinear ML models (regression & classification)

Objective today (and next Tuesday)

Use kernels to design nonlinear ML models (regression & classification)

Data projected to R”2 (nonseparable)

15
L] ®, L]
Lor P oo
'.
e
° s ..'
™ e
05 ° A »
® % w 2, []
%o ' i A
o s @
E @ A A A
5 00 °)
L)
> ° o L4
0
o
P A °
°
-0.5 .
o ° ..
° ° g
"
-1.0F = 9.
=123 10 05 0.0 05 10 15

X Label

Objective today (and next Tuesday)

Use kernels to design nonlinear ML models (regression & classification)

Goal: Non-
linear decision
boundary

N

1.0}

Data projected to R”2 (nonseparable)

0.5}

215 10 05 0.0 0.5 1.0 15
X Label

Objective today (and next Tuesday)

Use kernels to design nonlinear ML models (regression & classification)

Goal: Non-
linear decision
boundary

N

1.0}

Data projected to R~2 (nonseparable) Data in R™3 (separable)

Our e e
approach $

0.5}

Y Label

0.0

=123 10 05 0.0 05 10 15

X Label

Outline

1. A new perspective on ridge linear regression

2. Feature mapping and Kernel

3. Kernel trick and demo of kernel regression

Linear regression revisited

Dataset & = {x,,y;},x; € R%y. € R

Linear regression revisited

Dataset & = {x,,y;},x; € R%y. € R

Ridge Linear regression solves the following problem:

n
arg min Z w'x; — y)* + Allwll3
w
i=1

Linear regression revisited

Dataset & = {x,,y;},x; € R%y. € R

Ridge Linear regression solves the following problem:

n
arg min Z w'x; — y)* + Allwll3

i=1 ><: TM

Closed-form solution exists, i.e.,

Ww=XXT+AD"1XY T-,

Linear regression revisited

Claim: w = (XX + A)~'XY € Span(X)

Linear regression revisited

Claim: w = (XX + A)~'XY € Span(X)

An intuitive proof: GD (or SGD)

Linear regression revisited

Claim: w = (XX + A)~'XY € Span(X)

An intuitive proof: GD (or SGD)

A new perspective of linear regression

Since we know optimal solution lives in span(X), we can re-parameterize

n
W = 2 ax; = Xa, @i
i=1

o will fearn o imstene]

A new perspective of linear regression

Since we know optimal solution lives in span(X), we can re-parameterize
n
i=1

v
l /[RY,

arg min Y’ IIXK YII +llwll3
i=1 -

Original formulation

A new perspective of linear regression

Since we know optimal solution lives in span(X), we can re-parameterize

n
=1

A

argmini || X'w—Y ” i+/1||w||% arg min H X' Xa—Y H 2"‘ ||X05||%
w ‘1 a A A

Original formulation New formulation w/ a as our variables

W # jda&fh

A new perspective of linear regression prits
2 N
arg min H X" Xa-Y H L+ Al Xall3 R
a D A —

waj&

Y

A new perspective of linear regression

arg min H X'Xa—-Y H z+ Al Xall3
a

~
— . - —_—— ——

\
} WX W

Soluti a Vst

olution.

‘(\'7(\:\) (_/.R
a=(X"X+i) YER"

T V1o
—\11‘,_— Xy Xl X0, y X € ék =

L"‘ ><.lv:‘__ L \ —/\—

7<\>' ‘ ><\' 2(>

A new perspective of linear regression

arg min H X'Xa—-Y H z+ Al Xall3
a

Solution:

= (X'X+Al) YeR”

X'X e R, (X'X),, = x/x/% (x;,X;)

A new perspective of linear regression

When we make prediction on a test example X € IRd, we have:

n n
Wix = (Z ax;)'x = Z a; - (X;, X)

A new perspective of linear regression

When we make prediction on a test example X € IRd, we have:

o :(” ii)T:n i+ (X X)
w'X g}ax X g}a X, X .) L
W — <>4><«f>l> XY

A A
Notice a theme here:

Linear regression can be done by just using inner product of features
(X,Z), X € R4 z € R4

Outline

1. A new perspective on ridge linear regression

2. Feature mapping and Kernel

3. Kernel trick and demo of kernel regression

Feature mapping

Define ¢p(x) € R as a feature mapping (often m > d)

Feature mapping

Define ¢p(x) € R as a feature mapping (often m > d)

Ex1:x € R, ¢(x) = [x,x*]" € R?

Feature mapping

Define ¢p(x) € R as a feature mapping (often m > d)

Ex1:x € R, ¢(x) = [x,x*]" € R?

Feature mapping

Define ¢p(x) € R as a feature mapping (often m > d)
Ex1:X € R, ¢(x) = [x,x?*]" € R?

@ O

X

Feature mapping

Define ¢p(x) € R as a feature mapping (often m > d)

Ex 2: quadratic
feature mapping ¢

X = [xp XQ]T,

¢(X) — [1’x19 -x27 -xlza -x227 XIXZ]T

Feature mapping

Define ¢p(x) € R as a feature mapping (often m > d)

Ex 2: cubic feature
mapping ¢
X =[x, %,]",

¢(X) — [laxla -x29 —xlza —x22, xlet’ -x13, .XS, xlxzz, .xlz.xz]-r

o Y;B bt
Y~ !
Feature mapping '~ | T
Y M
Define ¢p(x) € R as a feature mapping (often m > d) {,}/
N
L
o L
Ex 2: CUb'_C feature Q: in general, for x € R, and a p-th
mapping ¢ order polynomial feature ¢,|what’s
the dimension of P(x)? »' x_
X = [xl’xz]T, 7(\1:7650

[
t

2 .2 2 .2 T
P(X) = [1,x, X, X1\ X3, X1 X0, X7, X5, X125, XX]

(

Feature mapping

Define ¢p(x) € R as a feature mapping (often m > d)

Ex 2: cubic feature Q: in general, for X € R4 and a p-th
mapping ¢ order polynomial feature ¢, what’s
the dimension of ¢(x)?
X =[x, %], lp

2 .2 2 .2 T
P(X) = [1,x7, X9, X7, X5, X1 X0, X3y X5, X157, X7]

d
at Ieast< >/;: GJ

P

Feature mapping

Define ¢p(x) € R as a feature mapping (often m > d)

Ex 2: CUbi_C feature Q: in general, for x € R, and a p-th
mapping ¢ order polynomial feature ¢, what’s

the dimension of ¢(x)?
X =[x, %],

t least d
at leas
2 2 3 .3 2 2. 1T

Dim of ¢(X) can be very large!

Fit linear functions in the high-dim feature space

The feature mapping ¢(x) € R™ allows us to perform linear regression in the ¢ space

Fit linear functions in the high-dim feature space

The feature mapping ¢(x) € R™ allows us to perform linear regression in the ¢ space

Ex: cubic feature mapping ¢

.
X =[x, %], ¢X)=[1x,x, xlz, x22, X1%, xf,xg,xlxzz, x12x2]T

N

[
Z/6 ﬁb(ﬁ = We* V‘))Y) =T (A))ﬁ .—f—(/\J/X_)/\
r—/

—+

—_ - l/\)’?k)g

£

Z
ST X 7T

Fit linear functions in the high-dim feature space

The feature mapping ¢(x) € R™ allows us to perform linear regression in the ¢ space

Ex: cubic feature mapping ¢

.
X =[x, %], ¢X)=[1x,x, xlz, x22,x1x2, x13,x23,x1x22, x12x2]T

ngb(X) now can represent a 3-order polynomials!

Fit linear functions in the high-dim feature space

The feature mapping ¢(x) € R™ allows us to perform linear regression in the ¢ space

Ex: cubic feature mapping ¢

.
X =[x, %], ¢X)=[1x,x, xlz, x22, X1%, x13,x23,x1x22, x12x2]T

ngb(X) now can represent a 3-order polynomials!

To fit a 3-order polynomial in X, we can instead do linear regression in ¢(X)

QX\NXV\) {j#?z%» dbzv)
)

Fit linear functions in the high-dim feature space

Perform linear regression in ¢ space, i.e.,

n

min Y’ (w— vi) + Alwll2
Y=l

Fit linear functions in the high-dim feature space

Perform linear regression in ¢ space, i.e.,

n
. ‘ 2
min Y —yl-) + Allwll3
w
i=1

Linear in ¢, but high-order poly in X

Fit linear functions in the high-dim feature space

Perform linear regression in ¢ space, i.e.,

n
. ‘ 2
min Y —yl-) + Allwll3
w
i=1

Linear in ¢, but high-order poly in X

z

What is the potential problem of doing this?

Fit linear functions in the high-dim feature space

Perform linear regression in ¢ space, i.e.,

n
. ‘ 2
min Y —yl-) + Allwll3
w
i=1

Linear in ¢, but high-order poly in X

What is the potential problem of doing this?

This is where the new perspective of linear regression and kernels come to rescue!

Kernel

Kernel k(x,z) € K.

/r
r T

Kernel

Kernel k(X, z)

A valid kernel is a kerne uc}@t 3¢, k(x,z) = p(x)"Pp(z), VX, Z

/(
v (7(\%3; X &

= %, z >

#D-, J\WJ%

Kernel

Kernel k(X, z)
A valid kernel is a kernel such that 3¢, k(x,z) = ¢(X)' p(z), VX, Z

Ex: quadratic kernel

k(x,z) = (x'z+ 1)?

#6«))

A
36 plz) = (XD

Kernel

Kernel k(X, z)
A valid kernel is a kernel such that 3¢, k(x,z) = ¢(X)' p(z), VX, Z

Ex: quadratic kernel

k(x,z) = (x'z+ 1)?
px) =[1 \/_xl’\/_x2’ xl,xz,\/_xlxz]
gas
ﬁﬁh@ iﬂ(a} <>< E:‘P)

Kernel

Kernel k(X, z)
A valid kernel is a kernel such that 3¢, k(x,z) = ¢(X)' p(z), VX, Z

Ex: quadratic kernel d
d Y EQ

k(x,z) = (x'z+ 1)?

$(x) = [1.7/2x,.1/2x,, xl,xz,\/_xlxz] >
25\ e o (oz)

Q: what'’s the computation of k(X, Z)’?

Kernel

Kernel k(X, z)
A valid kernel is a kernel such that 3¢, k(x,z) = ¢(X)' p(z), VX, Z

Ex: quadratic kernel
1< (%2])

— CP \%T CP(%)

k(x,z) = (x'z+ 1)?
px) =[1 \/_xl’\/_x2’ xl,xz,\/_xlxz]

)
Q: what’s the computation of k(X, z)? - o Cd

Q: what's the computation of ¢(x) ' ¢(z)? %)rx) R

c}*?
) € R 3 S
Kernel ¢ _ o)

ok y Ao
Kernel k(X, z) CA_WLE(C}(X) C@&g)>

A valid kernel is a kernel such that 3¢, k(x,z) = ¢(X)' p(z), VX, Z

Ex: quadratic kernel

k(x,z) = (x'z+ 1)?

\'s —
N TN & O
>l
Q: what'’s the computation of k(X, Z)? L = < (x3)
Q: what's the computation of ¢(x) ' ¢(z)? ?‘”’1

Kernel

Kernel k(X, z)
A valid kernel is a kernel such that 3¢, k(x,z) = ¢(X)' p(z), VX, Z

Ex: quadratic kernel
Ex: cubic feature mapping ¢

kx.z) = (x"z+ 1) kx,2) = X"z + 1)

/7: 20
(X)) = [1,3/ 221,/ 25, x2, 32,4/ 223,17 Generalizing to p-th order polynomials:

k(x, z)—(x z+1)p0 A
Q: what'’s the computation of k(X, Z)? ()

Q: what’s the computation of ¢(X) ' ¢(z)? ﬁi(ﬂ <
w%>~d)

<
>
ay &} z Kernel it A
GW&&.\W\

Gaussian Kernel: k(Xx,z) = exp (—||X — zllg/az)

The mapping ¢(X) is infinite-dimensional qg) 'éQ 89

Kernel
- : _ 27,2
Gaussian Kernel: k(Xx,z) = exp (—||X —zl||5/o)

The mapping ¢(X) is infinite-dimensional
d=1) gh W!/,\XWJW‘ </\

E@ the mapping ¢(X/¢ /\

1 x? '
¢(X)= ...,ﬁexp(—z—az eER
\/)/J

Kernel

Gaussian Kernel: k(Xx,z) = exp (—||X — z||§/02)

2. Linear function qub(X) can model any indefinitely differentiable function f

nylx) 5@(}(/

._//"'/"

Kernel

Gaussian Kernel: k(Xx,z) = exp (—||X — z||%/02)

2. Linear function w ' ¢(x) can model any indefinitely differentiable function f

Why? ¢ contains all polynomials, and f can be written as
an infinite Taylor series..

N
Vo)

Summary so far

1. Feature mapping ¢(X) lifts X into high-dimensional space (e.g., high-order polynomials)

Summary so far

1. Feature mapping ¢(X) lifts X into high-dimensional space (e.g., high-order polynomials)

2. A kernel k(X, z) is a symmetric function, such that there exists a ¢, so that

k(x,7) = ¢(x)' P(z)

Summary so far

1. Feature mapping ¢(X) lifts X into high-dimensional space (e.g., high-order polynomials)

2. A kernel k(X, z) is a symmetric function, such that there exists a ¢, so that

k(x,7) = ¢(x)' P(z)

3. Kernel allows us to compute {¢(X), ¢(z)) without ever explicitly computing ¢

(k(x, z) is easy to compute but {¢(x), ¢$(z)) is hard to compute)

