Kernel

Announcements

HW5 and P5 are released (due in one week)

Objective today (and next Tuesday)

Use kernels to design nonlinear ML models (regression \& classification)

Objective today (and next Tuesday)

Use kernels to design nonlinear ML models (regression \& classification)

Objective today (and next Tuesday)

Use kernels to design nonlinear ML models (regression \& classification)

Goal: Non-

linear decision
boundary

Objective today (and next Tuesday)

Use kernels to design nonlinear ML models (regression \& classification)

Goal: Non-

linear decision
boundary

Outline

1. A new perspective on ridge linear regression
2. Feature mapping and Kernel
3. Kernel trick and demo of kernel regression

Linear regression revisited

Dataset $\mathscr{D}=\left\{\mathbf{x}_{i}, y_{i}\right\}, \mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}$

Linear regression revisited

$$
\text { Dataset } \mathscr{D}=\left\{\mathbf{x}_{i}, y_{i}\right\}, \mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}
$$

Ridge Linear regression solves the following problem:

$$
\arg \min _{w} \sum_{i=1}^{n}\left(w^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Linear regression revisited

$$
\text { Dataset } \mathscr{D}=\left\{\mathbf{x}_{i}, y_{i}\right\}, \mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}
$$

Ridge Linear regression solves the following problem:

$$
\arg \min _{w} \sum_{i=1}^{n}\left(w^{\top} \mathbf{x}_{i}-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Closed-form solution exists, i.e.,

$$
\hat{w}=\left(X X^{\top}+\lambda I\right)^{-1} X Y
$$

$$
Y=\left[\begin{array}{ll}
y & \\
1 \\
i \\
1 \\
y & n
\end{array}\right]
$$

Linear regression revisited

Claim: $\hat{w}=\left(X X^{\top}+\lambda I\right)^{-1} X Y \in \operatorname{Span}(X)$

Linear regression revisited

Claim: $\hat{w}=\left(X X^{\top}+\lambda I\right)^{-1} X Y \in \operatorname{Span}(X)$

An intuitive proof: GD (or SGD)

Linear regression revisited

Claim: $\hat{w}=\left(X X^{\top}+\lambda I\right)^{-1} X Y \in \operatorname{Span}(X)$

An intuitive proof: GD (or SGD)

$$
w_{0}=\mathbf{0}, w^{t+1}=w^{t}-\eta\left[\sum_{i=1}^{n}\left(\mathbf{x}_{i}^{\top} w^{t}-y_{i}\right) \mathbf{x}_{i}+\lambda w^{t}\right]
$$

A new perspective of linear regression

Since we know optimal solution lives in span (X), we can re-parameterize

$$
w=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}=X \alpha, \alpha_{i} \in \mathbb{R}, \forall i
$$

We will learn α instead

A new perspective of linear regression

Since we know optimal solution lives in span (X), we can re-parameterize

Original formulation

A new perspective of linear regression

Since we know optimal solution lives in $\operatorname{span}(X)$, we can re-parameterize

$$
\begin{gathered}
w=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}=X \alpha, \alpha_{i} \in \mathbb{R}, \forall i \\
\arg \min _{w} \sum_{i=1}^{n}\left\|X^{\top} w-Y\right\|_{2}^{2}+\lambda\|w\|_{2}^{2} \\
\text { Original formulation } \\
\arg \min _{\alpha}\left\|X^{\top} X \alpha-Y\right\|_{\Delta}^{2}+\|X \alpha\|_{2}^{2} \\
\text { New formulation } w / \alpha \text { as our variables }
\end{gathered}
$$

A new perspective of linear regression

$$
\begin{gathered}
\arg \min _{\alpha}\left\|X^{\top} X \alpha-Y\right\|_{2}^{2}+\lambda\|X \alpha\|_{\Delta}^{2} \\
\omega=Y_{\alpha}
\end{gathered}
$$

A new perspective of linear regression

$$
\arg \min _{\alpha}\left\|X^{\top} X \alpha-Y\right\|_{2}^{2}+\lambda\|X \alpha\|_{2}^{2}
$$

(1) $\alpha \in R^{n}$

$$
\begin{aligned}
& \text { Solution: }
\end{aligned}
$$

A new perspective of linear regression

$$
\arg \min _{\alpha}\left\|X^{\top} X \alpha-Y\right\|_{2}^{2}+\lambda\|X \alpha\|_{2}^{2}
$$

Solution:

$$
\alpha=\left(X^{\top} X+\lambda I\right)^{-1} Y \in \mathbb{R}^{n}
$$

A new perspective of linear regression
When we make prediction on a test example $\mathbf{x} \in \mathbb{R}^{d}$, we have:

$$
\begin{gathered}
\hat{w}^{\top} \mathbf{x}=\left(\sum_{i=1}^{n} \underline{\underline{\alpha_{i}} \mathbf{x}_{i}}\right)^{\top} \mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \cdot\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle \\
\widehat{\omega}=\sum_{i=1}^{n} \alpha_{i} X_{i}^{\prime}
\end{gathered}
$$

A new perspective of linear regression

When we make prediction on a test example $\mathbf{x} \in \mathbb{R}^{d}$, we have:

$$
\hat{w}^{\top} \mathbf{x}=\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right)^{\top} \mathbf{x}=\sum_{i=1}^{n} \alpha_{i} \cdot\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle
$$

Notice a theme here:

Linear regression can be done by just using inner product of features

$$
\langle\mathbf{x}, \mathbf{z}\rangle, \mathbf{x} \in \mathbb{R}^{d}, \mathbf{z} \in \mathbb{R}^{d}
$$

Outline

1. A new perspective on ridge linear regression
2. Feature mapping and Kernel
3. Kernel trick and demo of kernel regression

Feature mapping

Define $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ as a feature mapping (often $m>d$)

Feature mapping

Define $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ as a feature mapping (often $m>d$)

$$
\text { Ex } 1: \mathbf{x} \in \mathbb{R}, \phi(\mathbf{x})=\left[x, x^{2}\right]^{\top} \in \mathbb{R}^{2}
$$

Feature mapping

Define $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ as a feature mapping (often $m>d$)

$$
\text { Ex 1: } \mathbf{x} \in \mathbb{R}, \phi(\mathbf{x})=\left[x, x^{2}\right]^{\top} \in \mathbb{R}^{2}
$$

Feature mapping

Define $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ as a feature mapping (often $m>d$)
Ex 1: $\mathbf{x} \in \mathbb{R}, \phi(\mathbf{x})=\left[x, x^{2}\right]^{\top} \in \mathbb{R}^{2}$

Feature mapping

Define $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ as a feature mapping (often $m>d$)

Ex 2: quadratic
feature mapping ϕ

$$
\begin{gathered}
\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}, \in R^{2} \\
\phi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right]^{\top}
\end{gathered}
$$

Feature mapping

Define $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ as a feature mapping (often $m>d$)

Ex 2: cubic feature mapping ϕ

$$
\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top},
$$

$\phi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{2}^{3}, x_{1} x_{2}^{2}, x_{1}^{2} y_{2}\right]^{\top}$

Feature mapping

Define $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ as a feature mapping (often $m>d$)

Ex 2: cubic feature mapping ϕ

$$
\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top},
$$

$$
\phi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{2}^{3}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}\right]^{\top}
$$

Q: in general, for $\mathbf{x} \in \mathbb{R}^{d}$, and a p-th order polynomial feature ϕ, what's the dimension of $\phi(\mathbf{x})$?

Feature mapping

$$
\text { Define } \phi(\mathbf{x}) \in \mathbb{R}^{m} \text { as a feature mapping (often } m>d \text {) }
$$

Ex 2: cubic feature mapping ϕ

$$
\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top},
$$

$$
\phi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{2}^{3}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}\right]^{\top}
$$

Q: in general, for $\mathbf{x} \in \mathbb{R}^{d}$, and a p-th order polynomial feature ϕ, what's the dimension of $\phi(\mathbf{x})$?
at least $\binom{d}{p} \approx e^{p}$

Feature mapping

Define $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ as a feature mapping (often $m>d$)

Ex 2: cubic feature mapping ϕ

$$
\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top},
$$

$\phi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{2}^{3}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}\right]^{\top}$

Q: in general, for $\mathbf{x} \in \mathbb{R}^{d}$, and a p-th order polynomial feature ϕ, what's the dimension of $\phi(\mathbf{x})$?

$$
\text { at least }\binom{d}{p}
$$

Dim of $\phi(\mathbf{x})$ can be very large!

Fit linear functions in the high-dim feature space

The feature mapping $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ allows us to perform linear regression in the ϕ space

Fit linear functions in the high-dim feature space

The feature mapping $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ allows us to perform linear regression in the ϕ space

Ex: cubic feature mapping ϕ

$$
\begin{aligned}
& \mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}, \phi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{2}^{3}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}\right]^{\top} \\
& \cos ^{T} \phi(x)=\omega_{0}+\omega_{1} x_{1} \cdots \omega x_{1}^{2}+\omega^{\prime} x_{2}{ }^{2} \\
& \cdots w^{\prime \prime} x_{1}^{3} \\
& \cdots \omega x_{1}^{2} x_{2}
\end{aligned}
$$

Fit linear functions in the high-dim feature space

The feature mapping $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ allows us to perform linear regression in the ϕ space

$$
\begin{gathered}
\text { Ex: cubic feature mapping } \phi \\
\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}, \phi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{2}^{3}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}\right]^{\top} \\
w^{\top} \phi(\mathbf{x}) \text { now can represent a 3-order polynomials! }
\end{gathered}
$$

Fit linear functions in the high-dim feature space

The feature mapping $\phi(\mathbf{x}) \in \mathbb{R}^{m}$ allows us to perform linear regression in the ϕ space

$$
\begin{gathered}
\text { Ex: cubic feature mapping } \phi \\
\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}, \phi(\mathbf{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, x_{1}^{3}, x_{2}^{3}, x_{1} x_{2}^{2}, x_{1}^{2} x_{2}\right]^{\top} \\
w^{\top} \phi(\mathbf{x}) \text { now can represent a 3-order polynomials! }
\end{gathered}
$$

To fit a 3-order polynomial in \mathbf{x}, we can instead do linear regression in $\phi(\mathbf{x})$

Fit linear functions in the high-dim feature space

Perform linear regression in ϕ space, i.e.,

$$
\min _{w} \sum_{i=1}^{n}\left(w^{\top} d\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}
$$

Fit linear functions in the high-dim feature space

Perform linear regression in ϕ space, i.e.,

$$
\min _{w} \sum_{i=1}^{n} \underbrace{\left.w^{\top} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}}_{\text {Linear in } \phi, \text { but high-order poly in } \mathbf{x}}
$$

Fit linear functions in the high-dim feature space

Perform linear regression in ϕ space, ie.,

$$
\min _{w} \sum_{i=1}^{n} \underbrace{\left.w^{\top} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}}_{\text {Linear in } \phi, \text { but high-order poly in } \mathbf{x}}
$$

What is the potential problem of doing this?

$$
\begin{aligned}
& d_{\infty}=\operatorname{dimit} x \\
& p-\not l a r n e r p o h y
\end{aligned}
$$

Fit linear functions in the high-dim feature space

Perform linear regression in ϕ space, i.e.,

$$
\min _{w} \sum_{i=1}^{n} \underbrace{\left.w^{\top} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}}_{\text {Linear in } \phi, \text { but high-order poly in } \mathbf{x}}
$$

What is the potential problem of doing this?

This is where the new perspective of linear regression and kernels come to rescue!

Kernel
Kernel $k(\mathbf{x}, \mathbf{z}) \in \mathbb{R}$

$$
x^{\top} z
$$

Kernel

Kernel $k(\mathbf{x}, \mathbf{z})$
A valid kernel is a kernel such that $\exists \phi, k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}$

$$
\begin{aligned}
k(x, z) & =x^{\top} z \\
& =\langle x, z\rangle
\end{aligned}
$$

ϕ : identiely

Kernel

Kernel $k(\mathbf{x}, \mathbf{z})$

A valid kernel is a kernel such that $\exists \phi, k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}$

Ex: quadratic kernel

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{2}
$$

$$
\begin{aligned}
& \phi(x) \cap ? \\
& \phi(x)^{\top} \phi(z)=\left(x^{\top} z+1\right)
\end{aligned}
$$

Kernel

Kernel $k(\mathbf{x}, \mathbf{z})$

A valid kernel is a kernel such that $\exists \phi, k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}$

Ex: quadratic kernel

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{2}
$$

$$
\phi(\mathbf{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right]^{\top}
$$

$$
\phi(x)^{\top} \varphi(z)=\left(x^{\top} z+1\right)
$$

Kernel

Kernel $k(\mathbf{x}, \mathbf{z})$

A valid kernel is a kernel such that $\exists \phi, k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}$

Ex: quadratic kernel

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{2}
$$

$$
\phi(\mathbf{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right]^{\top}
$$

Q: what's the computation of $k(\mathbf{x}, \mathbf{z})$?

Kernel

Kernel $k(\mathbf{x}, \mathbf{z})$

A valid kernel is a kernel such that $\exists \phi, k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}$

Ex: quadratic kernel

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{2}
$$

$$
\phi(\mathbf{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right]^{\top}
$$

Q: what's the computation of $k(\mathbf{x}, \mathbf{z})$?
Q: what's the computation of $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$?

Kernel
Kernel $k(\mathbf{x}, \mathbf{z}) \xrightarrow{\text { Conganataition }}\left(\phi(x)^{\top} \phi(z)\right)^{T} ?$?
A valid kernel is a kernel such that $\exists \phi, k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}$

Ex: quadratic kernel

$$
\begin{gathered}
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{2} \\
\phi(\mathbf{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right]^{\top}
\end{gathered}
$$

Q: what's the computation of $k(\mathbf{x}, \mathbf{z})$?
Q: what's the computation of $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$?

Ex: cubic feature mapping ϕ

Kernel

Kernel $k(\mathbf{x}, \mathbf{z})$

A valid kernel is a kernel such that $\exists \phi, k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z}), \forall \mathbf{x}, \mathbf{z}$

Ex: quadratic kernel

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{2}
$$

$$
\phi(\mathbf{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right]^{\top}
$$

Q: what's the computation of $k(\mathbf{x}, \mathbf{z})$?
Q: what's the computation of $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$?

Ex: cubic feature mapping ϕ

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{3}
$$

$$
p=20
$$

Generalizing to p -th order polynomials:

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}+1\right)^{p}
$$

Kernel
 Gaussian Kernel: $k(\mathbf{x}, \mathbf{z})=-\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)$

The mapping $\phi(\mathbf{x})$ is infinite-dimensional

$$
\phi(x) \in R^{\infty}
$$

Kernel

Gaussian Kernel: $k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)$

The mapping $\phi(\mathbf{x})$ is infinite-dimensional

$E x: \mathbf{x} \in \mathbb{R}$, the mapping $\phi(\mathbf{x})$:

$$
\phi(\mathbf{x})=[\ldots, \underbrace{\frac{1}{\sqrt{i!}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)}_{\hat{j}-\text { eh element }} \underbrace{i x}, \cdots]^{\top} \in \mathbb{R}^{\infty}
$$

Kernel

$$
\text { Gaussian Kernel: } k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)
$$

2. Linear function $w^{\top} \phi(\mathbf{x})$ can model any indefinitely differentiable function f

Kernel

$$
\text { Gaussian Kernel: } k(\mathbf{x}, \mathbf{z})=\exp \left(-\|\mathbf{x}-\mathbf{z}\|_{2}^{2} / \sigma^{2}\right)
$$

2. Linear function $w^{\top} \phi(\mathbf{x})$ can model any indefinitely differentiable function f

Why? ϕ contains all polynomials, and f can be written as an infinite Taylor series..

Summary so far

1. Feature mapping $\phi(\mathbf{x})$ lifts \mathbf{x} into high-dimensional space (e.g., high-order polynomials)

Summary so far

1. Feature mapping $\phi(\mathbf{x})$ lifts \mathbf{x} into high-dimensional space (e.g., high-order polynomials)
2. A kernel $k(\mathbf{x}, \mathbf{z})$ is a symmetric function, such that there exists a ϕ, so that

$$
k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
$$

Summary so far

1. Feature mapping $\phi(\mathbf{x})$ lifts \mathbf{x} into high-dimensional space (e.g., high-order polynomials)
2. A kernel $k(\mathbf{x}, \mathbf{z})$ is a symmetric function, such that there exists a ϕ, so that

$$
k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
$$

3. Kernel allows us to compute $\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle$ without ever explicitly computing ϕ ($k(\mathbf{x}, \mathbf{z})$ is easy to compute but $\langle\phi(\mathbf{x}), \phi(\mathbf{z})\rangle$ is hard to compute)
