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Announcements

HW5 and P5 are released (due in one week)
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3. Kernel trick and demo of kernel regression



Linear regression revisited

Dataset 𝒟 = {xi, yi}, xi ∈ ℝd, yi ∈ ℝ



Linear regression revisited

Dataset 𝒟 = {xi, yi}, xi ∈ ℝd, yi ∈ ℝ

Ridge Linear regression solves the following problem:

arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2



Linear regression revisited
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Ridge Linear regression solves the following problem:

arg min
w

n

∑
i=1

(w⊤xi − yi)2 + λ∥w∥2
2

Closed-form solution exists, i.e., 

ŵ = (XX⊤ + λI)−1XY
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Claim:  ŵ = (XX⊤ + λI)−1XY ∈ Span(X)

An intuitive proof: GD (or SGD)

w0 = 0, wt+1 = wt − η [
n

∑
i=1

(x⊤
i wt − yi)xi + λwt]
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A new perspective of linear regression

arg min
α

X⊤Xα − Y
2
2 + λ∥Xα∥2

2

Solution:

α = (X⊤X + λI)−1 Y ∈ ℝn

X⊤X ∈ ℝn×n, (X⊤X)i,j = x⊤
i xj = ⟨xi, xj⟩
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A new perspective of linear regression

When we make prediction on a test example , we have:x ∈ ℝd

ŵ⊤x = (
n

∑
i=1

αixi)⊤x =
n

∑
i=1

αi ⋅ ⟨xi, x⟩

Notice a theme here:

Linear regression can be done by just using inner product of features 
⟨x, z⟩, x ∈ ℝd, z ∈ ℝd
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Feature mapping 

Define  as a feature mapping (often )ϕ(x) ∈ ℝm m > d

Ex 2: cubic feature 
mapping  ϕ

x = [x1, x2]⊤,

ϕ(x) = [1,x1, x2, x2
1 , x2

2 , x1x2, x3
1 , x3

2 , x1x2
2 , x2

1 x2]⊤

Q: in general, for and a p-th 
order polynomial feature , what’s 

the dimension of ?

x ∈ ℝd,
ϕ

ϕ(x)

at least (d
p)

Dim of  can be very large!ϕ(x)
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The feature mapping  allows us to perform linear regression in the  spaceϕ(x) ∈ ℝm ϕ

Ex: cubic feature mapping  ϕ

x = [x1, x2]⊤, ϕ(x) = [1,x1, x2, x2
1 , x2

2 , x1x2, x3
1 , x3

2 , x1x2
2 , x2

1 x2]⊤

 now can represent a 3-order polynomials!w⊤ϕ(x)

To fit a 3-order polynomial in , we can instead do linear regression in x ϕ(x)
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Fit linear functions in the high-dim feature space

Perform linear regression in  space, i.e., ϕ

min
w

n

∑
i=1

(w⊤ϕ(xi) − yi)2 + λ∥w∥2
2

Linear in , but high-order poly in ϕ x

What is the potential problem of doing this?

This is where the new perspective of linear regression and kernels come to rescue!
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Kernel k(x, z)

Q: what’s the computation of ?k(x, z)

Generalizing to p-th order polynomials:
k(x, z) = (x⊤z + 1)p

Ex: quadratic kernel

k(x, z) = (x⊤z + 1)2
k(x, z) = (x⊤z + 1)3

Ex: cubic feature mapping  ϕ

ϕ(x) = [1, 2x1, 2x2, x2
1 , x2

2 , 2x1x2]⊤

A valid kernel is a kernel such that ,  ∃ϕ k(x, z) = ϕ(x)⊤ϕ(z), ∀x, z

Q: what’s the computation of ?ϕ(x)⊤ϕ(z)
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Kernel 

Gaussian Kernel: k(x, z) = exp (−∥x − z∥2
2/σ2)

The mapping  is infinite-dimensionalϕ(x)

Ex: , the mapping : x ∈ ℝ ϕ(x)

ϕ(x) = …, 1
i!

exp (− x2

2σ2 ) xi, …
⊤

∈ ℝ∞
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Kernel 

Gaussian Kernel: k(x, z) = exp (−∥x − z∥2
2/σ2)

2. Linear function  can model any indefinitely differentiable function w⊤ϕ(x) f

Why?  contains all polynomials, and  can be written as 
an infinite Taylor series..

ϕ f
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Summary so far

1. Feature mapping  lifts  into high-dimensional space (e.g., high-order polynomials)ϕ(x) x

2. A kernel  is a symmetric function, such that there exists a , so that k(x, z) ϕ
k(x, z) = ϕ(x)⊤ϕ(z)

3. Kernel allows us to compute  without ever explicitly computing ⟨ϕ(x), ϕ(z)⟩ ϕ
(  is easy to compute but   is hard to compute)k(x, z) ⟨ϕ(x), ϕ(z)⟩


