Ensemble Methods: Bagging & Random Forest

Recap on Decision (Regression) Tree

Regression dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P$

Issues of Decision Trees

Decision Tree can have high variance, i.e., overfilling!

Common regularizations in Decision Trees

1. Minimum number of examples per leaf

2. Maximum Depth

3. Maximum number of nodes

No split if # of examples < threshold

No split if it hits depth limit

Stop the tree if it hits max # of nodes

Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Variance Reduction via Averaging

Consider i.i.d random var

Var

Q: what is the va

$$\text{ iables } \{x_i\}_{i=1}^n, \quad x_i \sim \mathcal{N}(0, \sigma^2)$$

$$(x_i) = \sigma^2$$

ariance of
$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Avg significantly reduced variance!

Variance Reduction via Averaging

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right) \qquad \mathbf{A}$$

 $\sigma_{i,i} = \mathbb{E}[x_i x_i]$

- Consider (possibly correlated) random variables $\{x_i\}_{i=1}^n$, $x_i \sim \mathcal{N}(0,\sigma^2)$
 - **Q**: what is the variance of $\bar{x} = \sum x_i/3$ i=1
 - A: Var $(\bar{x}) = \sigma^2/3 + \sum \sigma_{i,i}/9$ *i≠j*
 - Worst case: when these RVs are positively correlated, averaging may not reduce variance

Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Consider train Decision Tree, i.e., $\hat{h} = ID3(\mathcal{D})$

Q: can we learn multiple \hat{h} and perform averaging to reduce variance?

Yes, we do this via Bootstrap

Why Bagging

 \hat{h} is a random quantity + it has high variance

Detour: Bootstrapping

Consider datase

Let us approximate P with the following discrete distribution:

$$f \mathscr{D} = \{z_i\}_{i=1}^n, z_i \sim P$$

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$

Bootstrapping

- Why \hat{P} can be regarded as an approximation of P?
- 1. We can use \hat{P} to approximate P's mean and variance, i.e.,

$$\mathbb{E}_{z \sim \hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \to \mathbb{E}_{z \sim P}[z]$$

$$\mathbb{E}_{z\sim\hat{P}}[f(z)] = \sum_{i=1}^{n} \frac{f(z_i)}{n} \to \mathbb{E}_{z\sim P}[f(z)]$$

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$

$$\mathbb{E}_{z\sim\hat{P}}[z^2] = \sum_{i=1}^n z_i^2/n \to \mathbb{E}_{z\sim P}[z^2]$$

2. In fact for any $f: Z \to \mathbb{R}$

Bootstrapping

A: sample uniform randomly from \hat{P} n times w/ replacement

- $\widehat{P}(z_i) = 1/n, \forall i \in [n]$
- Booststrap: treat \hat{P} as if it were the ground truth distribution P!
 - Now we can draw as many samples as we want from $\hat{P}!$
 - Q: What's the procedure of drawing n i.i.d samples from \hat{P} ?
- Q: after n samples, what's the probability that z_1 never being sampled?
 - A: $(1 1/n)^n \rightarrow 1/e, n \rightarrow \infty$

Bagging: Bootstrap Aggregation

i=1

1. Construct \hat{P} , s.t., $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$

3. For each $i \in [k]$, train classifier, e.g., $\hat{h}_i = ID3(\mathcal{D}_i)$

4. Averaging / Aggregation, i.e., $\bar{h} = \sum_{i=1}^{n} \hat{h}_i / k$

Consider dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$

 $\hat{y} =$

p =

Bagging in Test Time

- Given a test example x_{test}
- We can use $\{\hat{h}_i\}_{i=1}^k$ to form a distribution over labels:

- where:
- # of trees predicting +1

k

Bagging reduces variance

 $\bar{h} = \sum_{i=1}^{k} \hat{h}_{i}/k$ What happens when $k \to \infty$? i=1

$\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[\mathsf{ID3}(\mathcal{D}) \right]$ $\hat{P} \rightarrow P$, when $n \rightarrow \infty$

 $\mathbb{E}_{\mathcal{D}\sim P}\left[\mathsf{ID3}(\mathcal{D})\right] \quad \text{The expected decision tree (under true P)}$

Deterministic, i.e., zero variance

Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Motivation of Random Forest

Recall that: Var(\bar{x}

To avoid positive correlation, we want to make \hat{h}_i, \hat{h}_i as independent as possible

Consider any two hypothesis $\hat{h}_i, \hat{h}_j, i \neq j$ in Bagging

 \hat{h}_i, \hat{h}_i are not independent under true distribution P

e.g., $\mathcal{D}_i, \mathcal{D}_i$ have overlap samples

$$\bar{x}) = \sigma^2/3 + \sum_{\substack{i \neq j}} \sigma_{i,j}/9$$

Random Forest

Regular ID3: looking for split in all d dimensions ID3 in RF: looking for split in k randomly picked dimensions

- Key idea:
- In ID3, for every split, **randomly select** k (k < d) many features, find the split only using these k features

Benefit of Random Forest

By always randomly selecting subset of features for every tree, and every split:

We further reduce the correlation between $\hat{h}_i\,\&\,\hat{h}_j$

Demo of Random ForestDT w/ Depth 10RF w/ 2 trees

RF w/ 10 trees

RF w/ 5 trees

RF w/ 20 trees

RF w/ 50 trees

Summary for today

1. Create datasets via bootstrapping + train classifiers on them + averaging

2. To further reduce correlation between classifiers, RF randomly selects subset of dimensions for every split.

An approach to reduce the variance of our classifier: