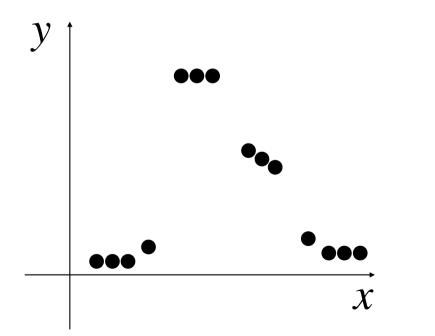
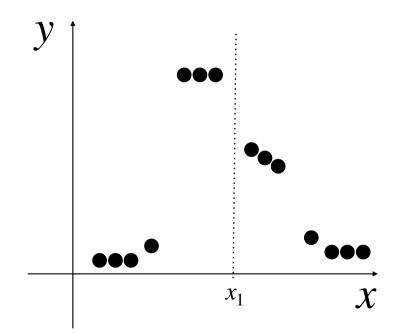
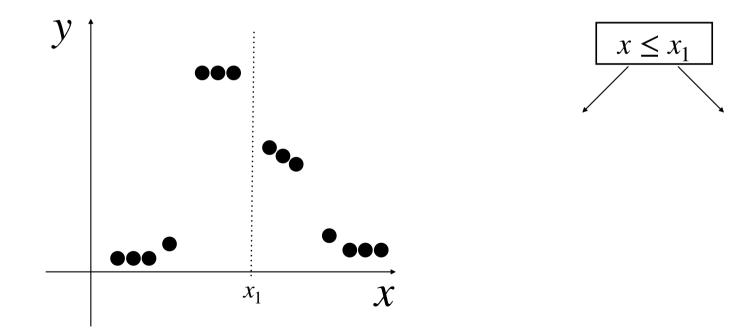
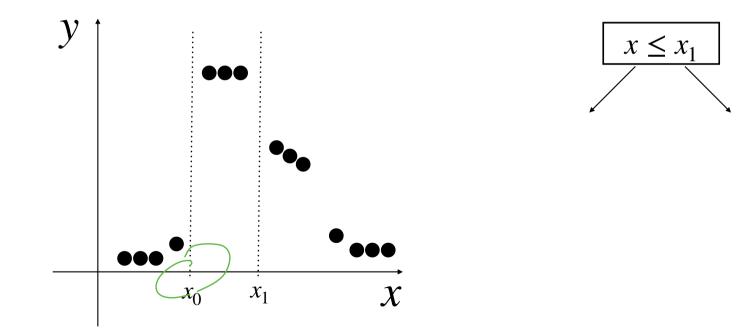
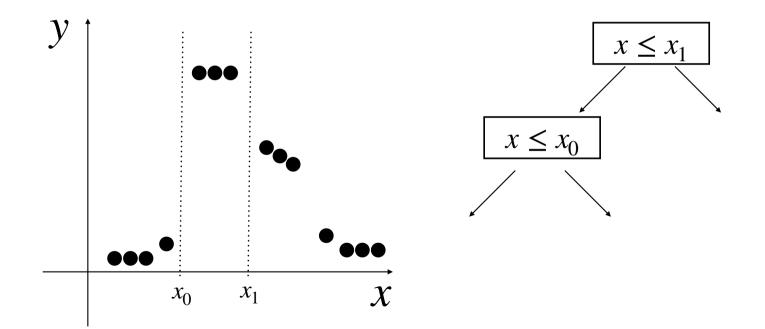
# Ensemble Methods: Bagging & Random Forest

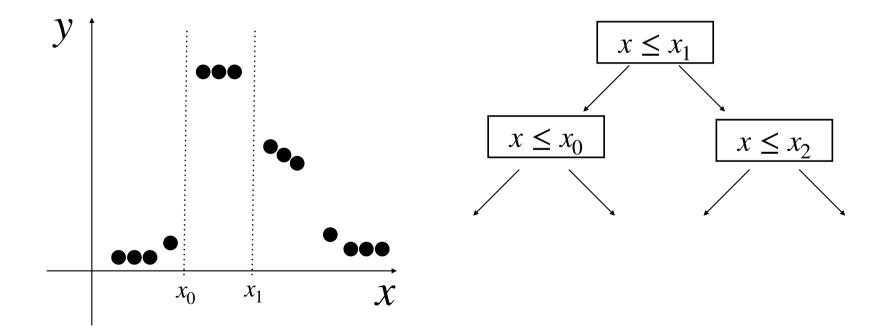


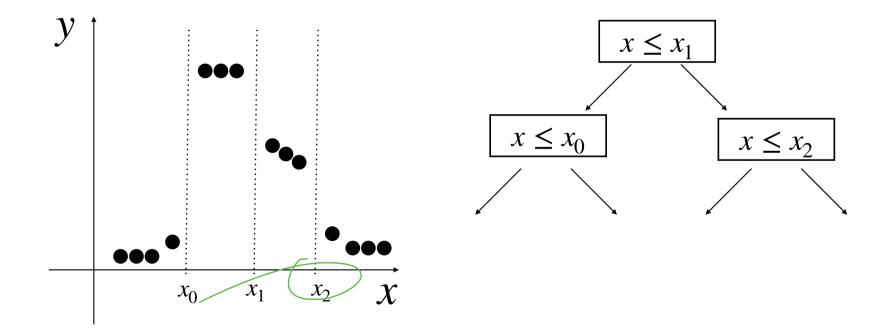


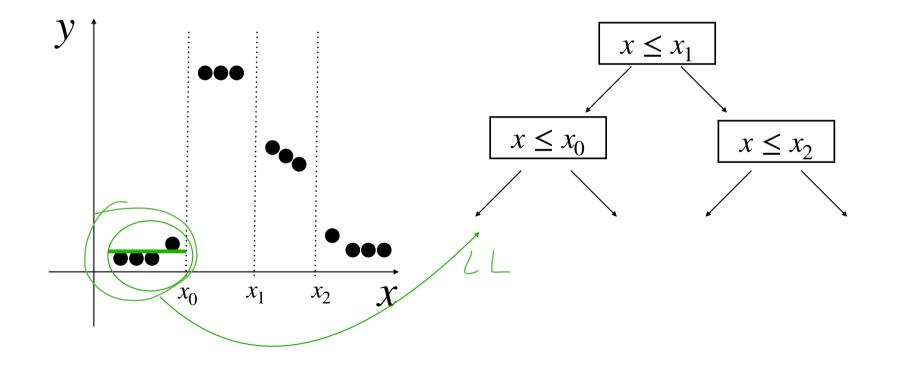


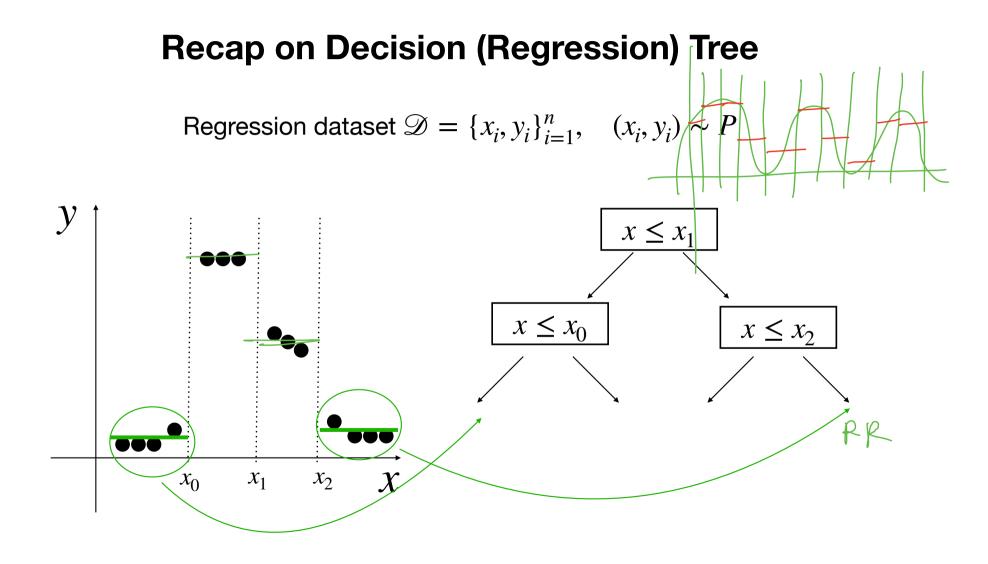








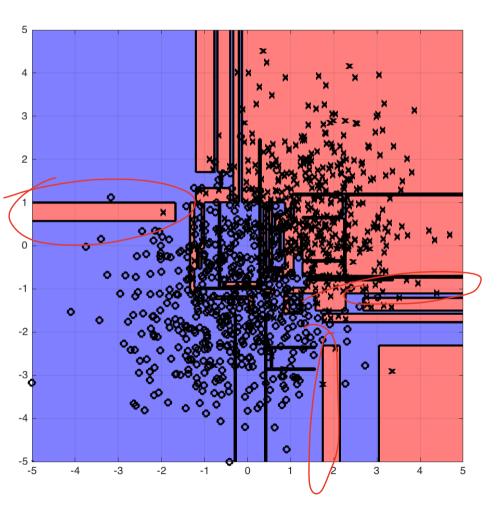




### **Issues of Decision Trees**

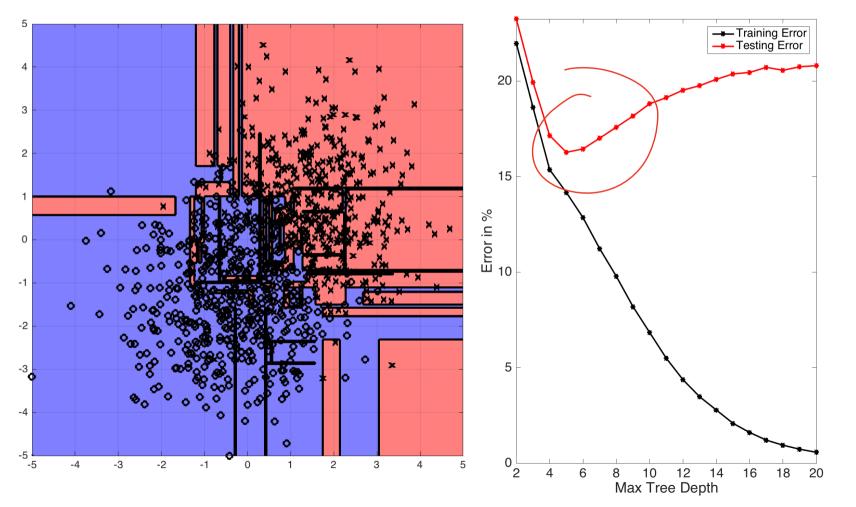
Decision Tree can have high variance, i.e., overfilling!

# **Issues of Decision Trees**



Decision Tree can have high variance, i.e., overfilling!

# **Issues of Decision Trees**



Decision Tree can have high variance, i.e., overfilling!

# **Common regularizations in Decision Trees**

1. Minimum number of examples per leaf

No split if # of examples < threshold

# **Common regularizations in Decision Trees**

1. Minimum number of examples per leaf

No split if # of examples < threshold

2. Maximum Depth

No split if it hits depth limit

# **Common regularizations in Decision Trees**

1. Minimum number of examples per leaf

No split if # of examples < threshold

#### 2. Maximum Depth

No split if it hits depth limit

3. Maximum number of nodes

Stop the tree if it hits max # of nodes

# **Outline of Today**

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Consider i.i.d random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{N}(0,\sigma^2)$ 

$$Var(x_i) = \sigma^2$$

Consider i.i.d random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{N}(0,\sigma^2)$ 

Consider i.i.d random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{N}(0, \sigma^2)$ 

$$Var(x_i) = \sigma^2$$

Q: what is the variance of  $\bar{x} = \sum_{i=1}^{n} x_i/n$ 

Avg significantly reduced variance!

Consider (possibly correlated) random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{N}(0, \sigma^2)$ 

Consider (possibly correlated) random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{N}(0, \sigma^2)$  $\chi_i \sim \mathcal{N}(0, \sigma^2)$ 

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left( \begin{array}{cccc} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{array} \right)$$

Consider (possibly correlated) random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{N}(0,\sigma^2)$ 

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left( \mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right)$$

Consider (possibly correlated) random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{N}(0,\sigma^2)$ 

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left( \mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right)$$

 $\sigma_{i,j} = \mathbb{E}[x_i x_j]$ 

Q: what is the variance of 
$$\bar{x} = \sum_{i=1}^{3} x_i/3$$

Consider (possibly correlated) random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{K}(0,\sigma^2)$  $\bigvee \alpha (\frac{\chi_i + \chi_i + \chi_i}{2}) = E \left( \frac{\chi_i + \chi_i + \chi_i}{2} \right)$ Q: what is the variance of  $\bar{x} = \sum x_i/3$  $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left( \mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right) \qquad \text{A: } \operatorname{Var}(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9 \quad : \quad \mathbf{1}$  $\sigma_{i,i} = \mathbb{E}[x_i x_j]$ ひいうニー

Consider (possibly correlated) random variables  $\{x_i\}_{i=1}^n$ ,  $x_i \sim \mathcal{N}(0,\sigma^2)$ 

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim \mathcal{N} \left( \mathbf{0}, \begin{bmatrix} \sigma^2 & \sigma_{1,2} & \sigma_{1,3} \\ \sigma_{2,1} & \sigma^2 & \sigma_{2,3} \\ \sigma_{3,1} & \sigma_{3,2} & \sigma^2 \end{bmatrix} \right)$$

Q: what is the variance of 
$$\bar{x} = \sum_{i=1}^{3} x_i/3$$
  
A:  $Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$ 

 $\sigma_{i,j} = \mathbb{E}[x_i x_j]$ 

Worst case: when these RVs are positively correlated, averaging may not reduce variance

# **Outline of Today**

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Consider train Decision Tree, i.e.,  $\hat{h} = ID3(\mathcal{D})$ 

 $\hat{h}$  is a random quantity + it has high variance

Consider train Decision Tree, i.e.,  $\hat{h} = ID3(\mathcal{D})$ 

# $\hat{h}$ is a random quantity + it has high variance

Q: can we learn multiple  $\hat{h}$  and perform averaging to reduce variance?

Consider train Decision Tree, i.e.,  $\hat{h} = ID3(\mathcal{D})$ 

# $\hat{h}$ is a random quantity + it has high variance

Q: can we learn multiple  $\hat{h}$  and perform averaging to reduce variance?

Yes, we do this via Bootstrap

# **Detour: Bootstrapping** $z_i = (x_i y_i)$

Consider dataset 
$$\mathscr{D} = \{z_i\}_{i=1}^n, z_i \sim P$$

# **Detour: Bootstrapping**

Consider dataset 
$$\mathscr{D} = \{z_i\}_{i=1}^n, z_i \sim P$$

Let us approximate P with the following discrete distribution:

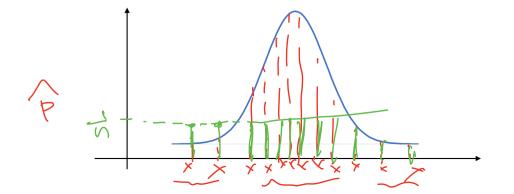
 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

### **Detour: Bootstrapping**

Consider dataset 
$$\mathscr{D} = \{z_i\}_{i=1}^n, z_i \sim P$$

Let us approximate P with the following discrete distribution:

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 



# **Bootstrapping**

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Why  $\hat{P}$  can be regarded as an approximation of P?



# **Bootstrapping**

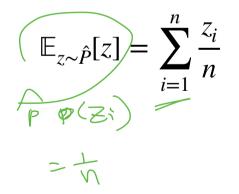
 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Why  $\hat{P}$  can be regarded as an approximation of P?

1. We can use  $\hat{P}$  to approximate P's mean and variance, i.e.,

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Why  $\hat{P}$  can be regarded as an approximation of P?



 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Why  $\hat{P}$  can be regarded as an approximation of P?

$$\mathbb{E}_{z \sim \hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \to \mathbb{E}_{z \sim P}[z]$$

$$\lim_{z \to \infty} \mathbb{E}_{z \sim P}[z]$$

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Why  $\hat{P}$  can be regarded as an approximation of P?

$$\mathbb{E}_{z \sim \hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \longrightarrow \mathbb{E}_{z \sim P}[z] \qquad \mathbb{E}_{z \sim \hat{P}}[z^2] = \sum_{i=1}^{n} z_i^2/n$$

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Why  $\hat{P}$  can be regarded as an approximation of P?

$$\mathbb{E}_{z\sim\hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \to \mathbb{E}_{z\sim P}[z] \qquad \mathbb{E}_{z\sim\hat{P}}[z^2] = \sum_{i=1}^{n} z_i^2/n \to \mathbb{E}_{z\sim P}[z^2]$$

$$\xrightarrow{\text{T}=}_{z\sim P}[z^3] \longrightarrow \underset{z\sim P}{\in} [z^3]$$

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Why  $\hat{P}$  can be regarded as an approximation of P?

$$\mathbb{E}_{z\sim\hat{P}}[z] = \sum_{i=1}^{n} \frac{z_i}{n} \to \mathbb{E}_{z\sim P}[z] \qquad \mathbb{E}_{z\sim\hat{P}}[z^2] = \sum_{i=1}^{n} z_i^2/n \to \mathbb{E}_{z\sim P}[z^2]$$
2. In fact for any  $f: Z \to \mathbb{R}$ 

$$\begin{array}{c} \not \leftarrow (z) \ e \times, \ \swarrow \end{array}$$

$$\mathbb{E}_{z \sim \hat{P}}[f(z)] = \sum_{i=1}^{n} \frac{f(z_i)}{n} \to \mathbb{E}_{z \sim P}[f(z)]$$

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Booststrap: treat  $\hat{P}$  as if it were the ground truth distribution P!

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Booststrap: treat  $\hat{P}$  as if it were the ground truth distribution P!

Now we can draw as many samples as we want from  $\hat{P}$ !

# **Bootstrapping** $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ Booststrap: treat $\widehat{P}$ as if it were the ground truth distribution P!

Now we can draw as many samples as we want from  $\hat{P}!$ 

Q: What's the procedure of drawing n i.i.d samples from  $\hat{P}$ ?

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Booststrap: treat  $\hat{P}$  as if it were the ground truth distribution P!

Now we can draw as many samples as we want from  $\hat{P}$ !

Q: What's the procedure of drawing n i.i.d samples from  $\hat{P}$ ? A: sample uniform randomly from  $\hat{P}$  n times **w/ replacement** 

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Booststrap: treat  $\hat{P}$  as if it were the ground truth distribution P!

Now we can draw as many samples as we want from  $\hat{P}!$ 

Q: What's the procedure of drawing n i.i.d samples from  $\hat{P}$ ? A: sample uniform randomly from  $\hat{P}$  n times **w/ replacement** 

Q: after n samples, what's the probability that  $z_1$  never being sampled?

 $\widehat{P}(z_i) = 1/n, \forall i \in [n]$ 

Booststrap: treat  $\hat{P}$  as if it were the ground truth distribution P!

Now we can draw as many samples as we want from  $\hat{P}$ !

Q: What's the procedure of drawing n i.i.d samples from  $\hat{P}$ ? A: sample uniform randomly from  $\hat{P}$  n times **w/ replacement** 

Q: after n samples, what's the probability that  $z_1$  never being sampled?

A: 
$$(1 - 1/n)^n \xrightarrow{1/e} n \to \infty$$

Consider dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ 

Consider dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ 

1. Construct  $\hat{P}$ , s.t.,  $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$ 

Consider dataset 
$$\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$
  
1. Construct  $\hat{P}$ , s.t.,  $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$   
2. Treat  $\hat{P}$  as the ground truth, draw k datasets  $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_k$  from  $\hat{P}$   
 $\mathcal{D}_2 \sim \hat{P}$   
 $\mathcal{D}_3 \sim \hat{P}$ 

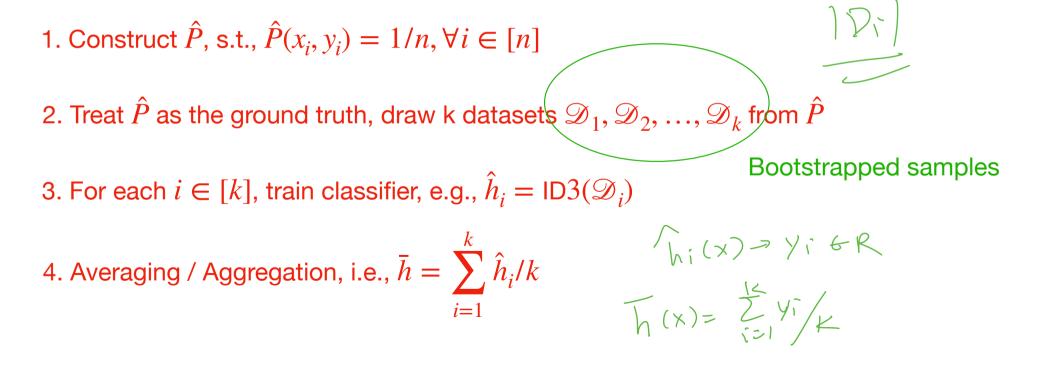
Consider dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ 

1. Construct  $\hat{P}$ , s.t.,  $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$ 2. Treat  $\hat{P}$  as the ground truth, draw k datasets  $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_k$  from  $\hat{P}$ Bootstrapped samples

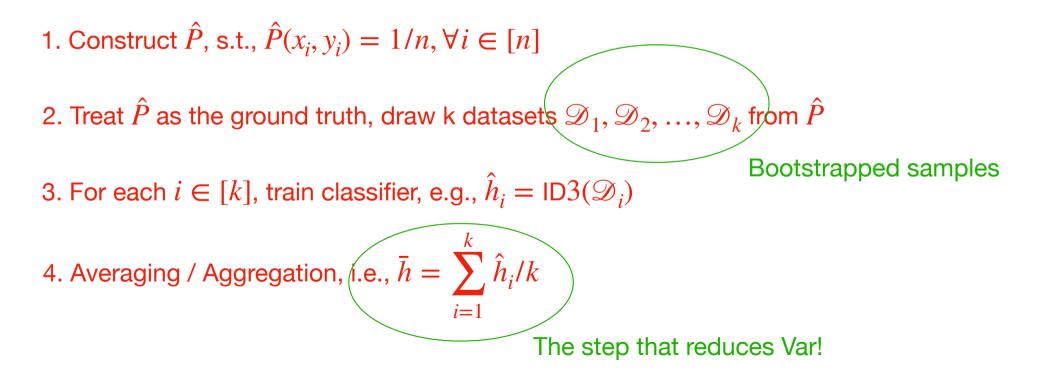
Consider dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ 

1. Construct  $\hat{P}$ , s.t.,  $\hat{P}(x_i, y_i) = 1/n, \forall i \in [n]$ 2. Treat  $\hat{P}$  as the ground truth, draw k datasets  $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_k$  from  $\hat{P}$ 3. For each  $i \in [k]$ , train classifier, e.g.,  $\hat{h}_i = \text{ID3}(\mathcal{D}_i)$   $\hat{h}_1, \dots, \hat{h}_k$ Bootstrapped samples

Consider dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ 



Consider dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$ 



#### **Bagging in Test Time**

Given a test example  $x_{test}$  (binary classification)

We can use  $\{\hat{h}_i\}_{i=1}^k$  to form a distribution over labels:  $\hat{y} = \begin{bmatrix} p \\ 1-p \end{bmatrix} \xrightarrow{p \vee b} \frac{1}{p - p}$ 

# **Bagging in Test Time**

Given a test example  $x_{test}$ 

We can use  $\{\hat{h}_i\}_{i=1}^k$  to form a distribution over labels:

$$\hat{y} = \begin{bmatrix} p \\ 1-p \end{bmatrix}$$

where:  $p = \frac{\text{\# of trees predicting } +1}{k}$ 

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when  $k \to \infty$ ?

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k \quad \text{What happens when } k \to \infty?$$
$$\bar{h}_i = \text{IP3}(P_i) \quad \text{Dim}P$$
$$\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[ \text{ID3}(\mathcal{D}) \right]$$

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when  $k \to \infty$ ?

$$\bar{h} \to \mathbb{E}_{\mathscr{D} \sim \hat{P}} \left[ \mathsf{ID3}(\mathscr{D}) \right]$$
$$\hat{P} \to P, \text{ when } n \to \infty$$

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when  $k \to \infty$ ?

```
\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[ \mathsf{ID3}(\mathcal{D}) \right]\hat{P} \to P, \text{ when } n \to \infty\mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[ \mathsf{ID3}(\mathcal{D}) \right]
```

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when  $k \to \infty$ ?

 $\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[ \mathsf{ID3}(\mathcal{D}) \right]$  $\hat{P} \to P, \text{ when } n \to \infty$  $\mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[ \mathsf{ID3}(\mathcal{D}) \right] \quad \text{The exp}$ 

 $\mathbb{E}_{\mathcal{D}\sim P}\left[\mathsf{ID3}(\mathcal{D})\right] \quad \text{The expected decision tree (under true P)}$ 

$$\bar{h} = \sum_{i=1}^{k} \hat{h}_i / k$$
 What happens when  $k \to \infty$ ?

$$\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[ \mathsf{ID3}(\mathcal{D}) \right]$$
$$\hat{P} \to P, \text{ when } n \to \infty$$

 $\mathbb{E}_{\mathcal{D} \sim P} \left[ \mathsf{ID3}(\mathcal{D}) \right] \quad \text{The expected decision tree (under true P)}$ 

Deterministic, i.e., zero variance

# **Outline of Today**

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest

Consider any two hypothesis  $\hat{h}_i, \hat{h}_j, i \neq j$  in Bagging

Consider any two hypothesis  $\hat{h}_i, \hat{h}_j, i \neq j$  in Bagging  $\hat{h}_j, \hat{h}_i$  are not independent under true distribution P  $\hat{h}_i, \hat{h}_i \approx P_i \qquad P_i \qquad P_j \neq \Phi$  $\hat{h}_j \in \mathbb{R}_2$ 

Consider any two hypothesis  $\hat{h}_i, \hat{h}_j, i \neq j$  in Bagging

 $\hat{h}_{j}, \hat{h}_{i}$  are not independent under true distribution Pe.g.,  $\mathcal{D}_{i}, \mathcal{D}_{j}$  have overlap samples

Consider any two hypothesis  $\hat{h}_i, \hat{h}_j, i \neq j$  in Bagging

 $\hat{h}_i, \hat{h}_i$  are not independent under true distribution P e.g.,  $\mathcal{D}_i, \mathcal{D}_i$  have overlap samples Recall that:  $Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$  $\sigma_{i,j}/9$ between b: h,

Consider any two hypothesis  $\hat{h}_i, \hat{h}_j, i \neq j$  in Bagging

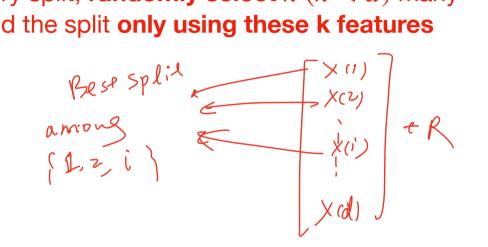
 $\hat{h}_{j}, \hat{h}_{i}$  are not independent under true distribution Pe.g.,  $\mathcal{D}_{i}, \mathcal{D}_{j}$  have overlap samples

Recall that: 
$$Var(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$$

To avoid positive correlation, we want to make  $\hat{h}_i, \hat{h}_i$  as independent as possible

Key idea:

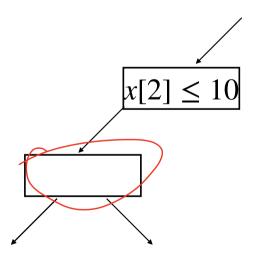
In ID3, for every split, **randomly select** k (k < d) many features, find the split **only using these k features** 



ヒンシ

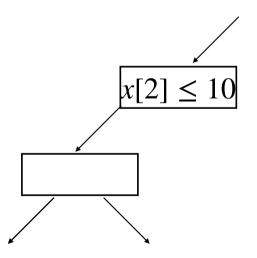
Key idea:

In ID3, for every split, **randomly select** k (k < d) many features, find the split **only using these k features** 



Key idea:

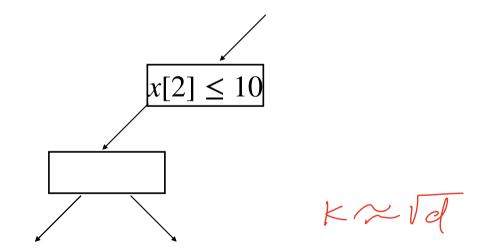
In ID3, for every split, **randomly select** k (k < d) many features, find the split **only using these k features** 



Regular ID3: looking for split in all d dimensions

Key idea:

In ID3, for every split, **randomly select** k (k < d) many features, find the split **only using these k features** 

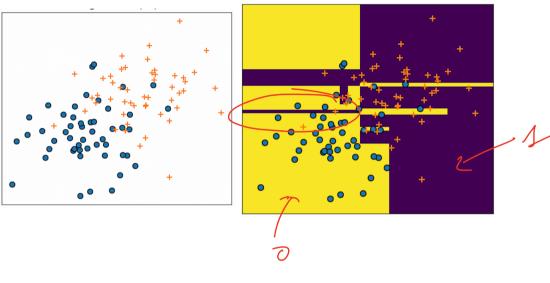


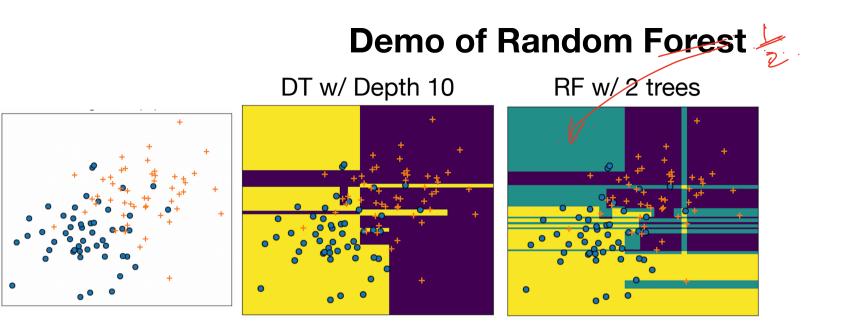
Regular ID3: looking for split in all d dimensions ID3 in RF: looking for split in k randomly picked dimensions

#### **Benefit of Random Forest**

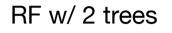
By always randomly selecting subset of features for every tree, and every split:

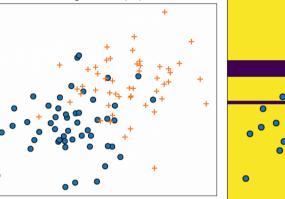
DT w/ Depth 10

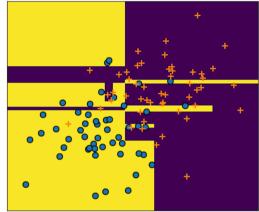


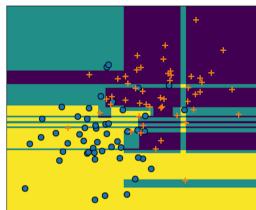


DT w/ Depth 10

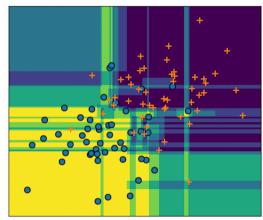






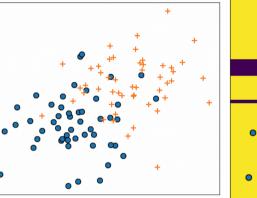


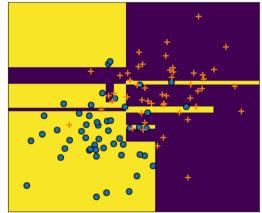
RF w/ 5 trees

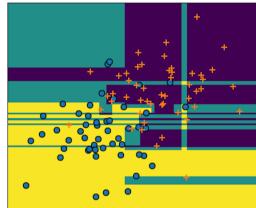


#### DT w/ Depth 10

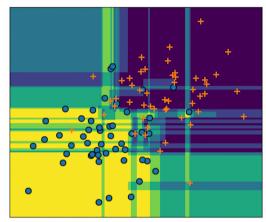




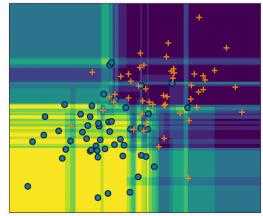




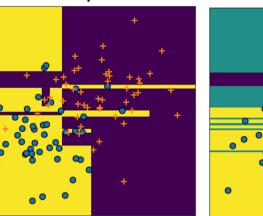
RF w/ 5 trees

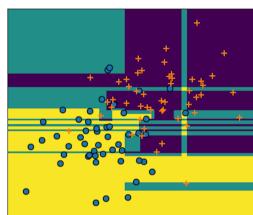


#### RF w/ 10 trees

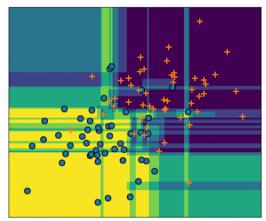


DT w/ Depth 10 RF w/ 2 trees



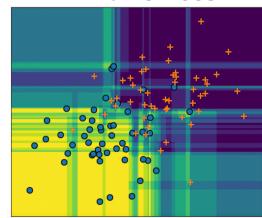


RF w/ 5 trees

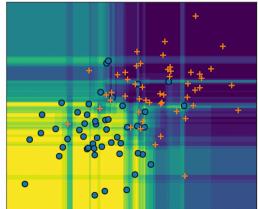


RF w/ 10 trees

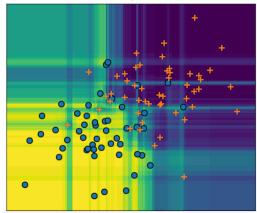
0







RF w/ 50 trees



#### **Summary for today**

An approach to reduce the variance of our classifier:

#### **Summary for today**

#### An approach to reduce the variance of our classifier:

1. Create datasets via bootstrapping + train classifiers on them + averaging

# **Summary for today**

#### An approach to reduce the variance of our classifier:

1. Create datasets via bootstrapping + train classifiers on them + averaging

2. To further reduce correlation between classifiers, RF randomly selects subset of dimensions for every split.