
Ensemble Methods:  
Bagging & Random Forest
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Common regularizations in Decision Trees

1. Minimum number of examples per leaf
No split if # of examples < threshold

2. Maximum Depth
No split if it hits depth limit

3. Maximum number of nodes

Stop the tree if it hits max # of nodes



Outline of Today

1. Variance Reduction using averaging

3. Random Forest

2. Bagging: Bootstrap Aggregation
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Variance Reduction via Averaging

Consider (possibly correlated) random variables {xi}n
i=1, xi ∼ $(0,σ2)

x1
x2
x3

∼ $ 0,
σ2 σ1,2 σ1,3

σ2,1 σ2 σ2,3

σ3,1 σ3,2 σ2

Q: what is the variance of x̄ =
3

∑
i=1

xi/3

σi,j = %[xixj]

A: Var(x̄) = σ2/3 + ∑
i≠j

σi,j /9

Worst case: when these RVs are positively correlated, 
averaging may not reduce variance
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 is a random quantity + it has high varianceĥ
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Why Bagging

Consider train Decision Tree, i.e., ĥ = ID3(!)

 is a random quantity + it has high varianceĥ

Q: can we learn multiple  and perform averaging to reduce variance? ĥ

Yes, we do this via Bootstrap
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Bootstrapping
̂P (zi) = 1/n, ∀i ∈ [n]

Why  can be regarded as an approximation of ? ̂P P

1. We can use  to approximate ’s mean and variance, i.e., ̂P P

%z∼ ̂P[z] =
n

∑
i=1

zi

n → %z∼P[z] %z∼ ̂P[z2] =
n

∑
i=1

z2
i /n → %z∼P[z2]

2. In fact for any f : Z → ℝ

%z∼ ̂P[ f(z)] =
n

∑
i=1

f(zi)
n

→ %z∼P[ f(z)]
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Bootstrapping
̂P (zi) = 1/n, ∀i ∈ [n]

Booststrap: treat  as if it were the ground truth distribution !̂P P

Now we can draw as many samples as we want from !̂P

Q: What’s the procedure of drawing n i.i.d samples from ?̂P

A: sample uniform randomly from  n times w/ replacement̂P

Q: after n samples, what’s the probability that  never being sampled?z1

A:  (1 − 1/n)n → 1/e, n → ∞
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Consider dataset ! = {xi, yi}n
i=1, (xi, yi) ∼ P, xi ∈ ℝd, yi ∈ {−1,1}

1. Construct , s.t., ̂P ̂P(xi, yi) = 1/n, ∀i ∈ [n]

2. Treat  as the ground truth, draw k datasets  from ̂P !1, !2, …, !k ̂P

3. For each , train classifier, e.g., i ∈ [k] ĥi = ID3(!i)

4. Averaging / Aggregation, i.e., h̄ =
k

∑
i=1

ĥi/k

The step that reduces Var!

Bootstrapped samples
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Bagging in Test Time

Given a test example xtest

We can use  to form a distribution over labels:{ĥi}k
i=1

̂y = [ p
1 − p]

where: 

p =  # of trees predicting  +1 
k
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Bagging reduces variance

h̄ =
k

∑
i=1

ĥi/k What happens when ?k → ∞

h̄ → %!∼ ̂P [ID3(!)]
̂P → P,  when n → ∞

%!∼P [ID3(!)] The expected decision tree (under true )P
Deterministic, i.e., zero variance
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 are not independent under true distribution ĥj, ĥi P
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Motivation of Random Forest

Consider any two hypothesis  in Baggingĥi, ĥj, i ≠ j

 are not independent under true distribution ĥj, ĥi P

e.g.,  have overlap samples!i, !j

Recall that: Var(x̄) = σ2/3 + ∑
i≠j

σi,j /9

To avoid positive correlation, we want to make  as independent as possibleĥi, ĥj
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Random Forest
Key idea: 


In ID3, for every split, randomly select  many 
features, find the split only using these k features 

k (k < d)

x[2] ≤ 10

Regular ID3: looking for split in all d dimensions
ID3 in RF: looking for split in k randomly picked dimensions



Benefit of Random Forest

By always randomly selecting subset of features for every tree, and every split:

We further reduce the correlation between ĥi & ĥj
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Demo of Random Forest
DT w/ Depth 10 RF w/ 2 trees RF w/ 5 trees

RF w/ 10 trees RF w/ 20 trees RF w/ 50 trees
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Summary for today

An approach to reduce the variance of our classifier:

1. Create datasets via bootstrapping + train classifiers on them + averaging

2. To further reduce correlation between classifiers, RF randomly 
selects subset of dimensions for every split.


