Decision Trees

HW6 and P6 will be released soon

Announcements

Recap on the K-NN algorithm

[1-NN decision boundary in prelim]

K-NN can have complicated nonlinear decision boundaries

k-NN is expensive in computation and memory

Objective today

Decision tree — more efficient algorithm that

(1) splits space into regions with the same label, (2) is very fast in test time

Outline of Today

1. Decision tree in classification

2. Decision tree in regression

3. Demos of decision tree

Overview of the Decision Tree algorithm

How to split a tree node

 $S_L + S_R = S, S_L \cap S_R = \emptyset$

Consider k-class classification, i.e., $y \in \{1, 2, ..., k\}$

Goal: do an axis aligned split such that diversity of labels in leafs are reduced

How to mathematically quantify "diversity"?

Detour: Entropy

1. For each label i, Define $p_i =$

(Probability of y being label i)

2. Entropy: H(S)

High entropy means "diverse, chaos, uncertain"

Given a set $S = \{x_i, y_i\}_{i=1}^n, y_i \in \{1, 2, ..., k\}$, measure the diversity of labels via entropy

number of label i
$$n = \frac{\sum_{j=1}^{n} \mathbf{1}(y_j = i)}{n}$$

$$S(i) = \sum_{i=1}^{k} -p_i \ln(p_i)$$

Entropy

Entropy H(y):

$-P(y = 1) \cdot \ln P(y = 1) - P(y = 0) \cdot \ln P(y = 0)$

$= -p \ln p - (1-p) \ln(1-p)$

Consider a Bernoulli distribution

P(y = 1) = p, P(y = 0) = 1 - p

Entropy

Consider a categorical distribution

$y \in \{1, 2, ..., k\}, P(y)$

Q: when is entropy maximized?

$$= i) = p_i \ge 0, \quad \sum_{i=1}^k p_i = 1$$

Back to tree node split...

Consider a split, i.e, dim i and threshold τ ,

Optimization:

Q: how many splits we need to check?

Put everything together — ID3 algorithm

Input: training set $S = \{x, y\}$

- **Decision_tree(***S***)**:
 - If all y in S are the same
 Done, and return this label
 - Else:

Find a split (i, τ) that minimizes weighted entropy

Call Decision_tree(S_L) & Decision_tree(S_R)

Outline of Today

1. Decision tree in classification

2. Decision tree in regression

3. Demos of decision tree

Regression

How to split the note, i.e., what is the diversity measure?

Consider a set of training

Define the sample

Impurity: sample variance

g points
$$S = \{x_i, y_i\}_{i=1}^m, y_i \in \mathbb{R}$$

We mean
$$\hat{y}_S = \sum_{i=1}^m y_i/m$$

e $\widehat{Var}(S) = \sum_{i=1}^m (y_i - \bar{y}_S)^2/m$

Regression Tree

Regression_Tree(S):

• IF $S \leq k$:

Set leaf value to be \bar{y}_S

• ELSE:

For all (i, τ) , find the split such that minimizes $\frac{|S_L|}{|S|} \widehat{Var}(S_L) + \frac{|S_R|}{|S|} \widehat{Var}(S_R)$ Call Regression_Tree(S_L) & Regression_Tree(S_R)

Outline of Today

1. Decision tree in classification

2. Decision tree in regression

3. Demos of decision tree

Issue of Decision Trees

Decision Tree can have high variance, i.e., overfilling!

Take-home messages

- 1 Decision tree algorithms splits space into axis-aligned regions
 - Each region ideally should only contain one unique label
- 2: Split a node such that the entropy of labels in the leafs are minimized

3: Can easily overfit as the depth of the tree increases (limiting the depth of the tree is a good regularization)