
Clustering & the K-means 
algorithm

 



Announcements:

1. HW1 is out, due Sep 12

2. P1 will be out this afternoon

3. CIS partner finding social: this Friday 4-6, Gates 01 



Recap
The K-NN algorithm

Example: 3-NN with Euclidean distance on a binary classification data



Recap

T/F: We can use train-validation trick to determine the parameter K

T/F: K-NN will fail when feature dimension is high

T/F: in worst case, number of training example should scale in  for K-NN to succeedexp(d)



Objective

Understand the K-means algorithm and why it works



Outline for Today

1. Unsupervised Learning: Clustering

3. Convergence of K-means

2 the K-means algorithm



What is clustering?

It is an unsupervised learning procedure (i.e., applies to data without ground truth labels)



Usage of clustering algorithms in real world
Example: Learning to detect cars without ground truth label

A point cloud from a Lidar sweep (4-d data)
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A point cloud from a Lidar sweep (4-d data)

Apply clustering 
on this dataset 
(point cloud)

Different color represents different clusters



Usage of clustering algorithms in real world
Example: Learning to detect cars without ground truth label

Different color represents different clusters

Fitting 
bounding box 

around clusters

These boxes are the pseudo-labels we 
use to train detector
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The K-means algorithm
Input , parameters ! = {x1, …, xn}, xi ∈ ℝd K

Expected output: K centroids , and K clusters {μ1, μ2, …, μk}, μi ∈ ℝd C1 . …, CK

Ci = {x ∈ ! s.t., μi is the closest centroid to x}

The data assignment procedure:

If we had  centroids, we could split the 
dataset into K clusters, , by 

K
C1, …, CK

assigning each data point to its nearest centroid



The data assignment procedure

 centroids  splits the space into a voronoi diagram K μ1, …, μk



The centroid computation procedure 



The centroid computation procedure 

If we magically had the clusters , 
we could compute centroids as follows:

C1, …, CK

 the mean of the data in μi : Ci



The K-means algorithm
Iterate between Centroid computation and Data Assignment!
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The K-means algorithm

Initialize K clusters C1, C2, …, CK,  where  ∪K
i=1 Ci = !,  and Ci ∩ Cj = ∅, for i ≠ j

2. the data assignment procedure, i.e., re-split 
data into using C1, …, CK, μ1, …, μk

1. centroids computation using , i.e.,for all i, 

 (i.e., the mean of the data in )

C1, …, CK
μi = ∑

x∈Ci

x/ |Ci | Ci

Repeat until convergence:

Iterate between Centroid computation and Data Assignment!
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The K-means algorithm



The K-means algorithm

….



Let’s try out K-means!
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Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution
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Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Given any K disjoint groups , and any K centroids, define a loss function: C1, C2, …, CK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Total distance of points in  to Ci μi
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K-means as a Coordinate Descent Algorithm

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Q1: w/  fix, what is ? C1, …, CK arg min
μ1,…,μk

ℓ({Ci}, {μi})

Q2: w/  fix, what is ? μ1, …, μK arg min
C1,…,Ck

ℓ({Ci}, {μi})

K-means minimizes  in an alternating fashion:  ℓ
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K means is doing Coordinate Descent here

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

μ1, …, μK = arg min
μ1,…,μk

ℓ({Ci}, {μi})
 C1, …, CK = arg min

C1,…,Ck

ℓ({Ci}, {μi})

K-means Algorithm: (re-stated from a different perspective) 

Initialize μ1, …, μK
Repeat until convergence:
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How to pick K? 

ℓK := min
C1,…,CK,μ1,…,μK

ℓ({Ci}, {μi}) =
K

∑
i=1

∑
x∈Ci

∥x − μi∥2
2

Given ,  we can look at the minimum lossK

Q: Should we just naively pick a K that the  is zero? ℓK

No! When , loss is zero (every data point is a cluster!)K = n

Note that exactly compute the  is NP-hard, but we can approximate it w/ K-means 
solutions

min
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In practice, we can gradually increase K, and keep track the loss , and stop when  does 

not drop too much
ℓK ℓK
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not drop too much
ℓK ℓK



Summary

1. The first Unsupervised Learning Algorithm — K means

2. Relationship between K-means algorithm and the Coordinate 
descent procedure on loss ℓ({Ci}, {μi})

iteratively computes centroids and clusters


