
Boosting



Announcements

Kaggle competition (extra credit) is coming out soon 



Recap on Bagging

Construct , s.t., ̂P ̂P(xi, yi) = 1/n, ∀i ∈ [n]

𝒟1 𝒟2 . . . 𝒟k

ĥ1 = ID3(𝒟1) ĥk = ID3(𝒟k)ĥ2 = ID3(𝒟2)

ĥ =
k

∑
i=1

ĥi/k Does bagging reduce bias?



Today’s Question 

Can we combine weak learners into a strong learner? 



Outline of Today

1. Gradient Descent without accurate gradient

3. Example: the AdaBoost Algorithm

2. Boosting as Approximate Gradient Descent



Gradient Descent without an accurate gradient

Consider minimizing the following function L(y), y ∈ ℝn

Gradient descent:

yt+1 = yt − ηgt,  where gt = ∇L(yt)

When  is small and , we know η gt ≠ 0 L(yt+1) < L(yt)



Gradient Descent without an accurate gradient

Consider minimizing the following function L(y), y ∈ ℝn

Approximate Gradient descent:

yt+1 = yt − η ̂gt,  where  ̂gt ≠ ∇L(yt)

Q: Under what condition of , can we still guarantee ? ̂gt L(yt+1) < L(yt)

A: As long as ⟨ ̂gt, ∇L(yt)⟩ > 0



Outline of Today

1. Gradient Descent without accurate gradient

3. Example: the AdaBoost Algorithm

2. Boosting as Approximate Gradient Descent



Key question that Boosting answers:

Combine weak learners together to generate a strong learner with 
lower bias

(Weak learners: classifiers whose accuracy is slightly above 50%)



Setup

We have a binary classification data 𝒟 = {xi, yi}n
i=1, (xi, yi) ∼ P

Hypothesis class  hypothesis ℋ, h : X ↦ {−1, + 1}

Loss function , e.g., exponential loss ℓ(h(x), y) exp(−yh(x))

Goal: learn an ensemble H(x) =
T

∑
t=1

αtht(x),  where ht ∈ ℋ



The Boosting Algorithm

Find a new classifier , s.t.,   has smaller 
training error

ht+1 Ht+1 = Ht + αht+1

For t = 1 …

Initialize H1 = h1 ∈ ℋ



Training weak learners

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn

Define L(ŷ) =
n

∑
i=1

ℓ( ̂yi, yi),  where  ̂yi = Ht(xi)

: the total training loss of ensemble L(ŷ) Ht

Q: To minimize , cannot we just do GD on  directly?L(ŷ) ŷ

A: no, we want find  that minimizes , but it needs to be from some ensemble ŷ L H



Training weak learners

Define L(ŷ) =
n

∑
i=1

ℓ( ̂yi, yi),  where  ̂yi = Ht(xi)

Let us compute  — the ideal descent direction∇L(ŷ) ∈ ℝn

ŷ

−∇L(ŷ)
Idea: find a , such that 

 is close to 
h ∈ ℋ

[h(x1), …h(xn)]⊤ −∇L(ŷ)

Denote ŷ = [Ht(x1), Ht(x2), …, Ht(xn)]⊤ ∈ ℝn



Training weak learners

ŷ

−∇L(ŷ) = [−
∂ℓ( ̂yi, yi)

∂ ̂yi
, …, −

∂ℓ( ̂yn, yn)
∂ ̂yn

]⊤

arg min
h∈ℋ

n

∑
i=1

h(xi) ⋅
∂ℓ( ̂yi, yi)

∂ ̂yi

:=wi

= arg min
h∈ℋ

n

∑
i=1

|wi |(h(xi) ⋅ sign(wi))
Turned it to a 

weighted 
classification 

problem!
= arg min

h∈ℋ

n

∑
i=1

|wi |(1(h(xi) = sign(wi)) − 1(h(xi) ≠ sign(wi)))

= arg min
h∈ℋ

n

∑
i=1

|wi | ⋅ 1(h(xi) = sign(wi)) = arg min
h∈ℋ

n

∑
i=1

|wi | ⋅ 1(h(xi) ≠ − sign(wi))

Wen Sun

Wen Sun

Wen Sun

Wen Sun

Wen Sun

Wen Sun

Wen Sun

Wen Sun



Training weak learners

ŷ

−∇L(ŷ)

ŷ′￼

ht+1 := arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ − sign(wi))

Finding  that is 
close to  can be done via 
weighted binary classification:

[h(x1), …, h(xn)]⊤

−∇L(ŷ)

[ht+1(x1), …, ht+1(xn)]⊤

ŷ′￼ = ŷ + α[ht+1(x1), …, ht+1(xn)]⊤

= [Ht(x1) + αht+1(x1), …, Ht(xn) + αht+1(xn)]⊤

A new training set: 


{pi, xi, − sign(wi)},  where pi = |wi | /
n

∑
j=1

|wi |

Wen Sun

Wen Sun

Wen Sun

Wen Sun



The Boosting Algorithm Revisit

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Compute ̂yi = Ht(xi), ∀i ∈ [n]

Compute , and normalize wi := ∂ℓ( ̂yi, yi)/∂ ̂yi pi = |wi | /∑
j

|wj | , ∀i

Run classification: ht+1 = arg min
n

∑
i=1

pi ⋅ 1(h(xi) ≠ − sign(wi))

Add : ht+1 Ht+1 = Ht + αht+1

arg max
h∈ℋ

( − ∇L(ŷ))⊤

h(x1)
h(x2). . .
h(xn)

ŷ

−∇L(ŷ)

Wen Sun

Wen Sun

Wen Sun

Wen Sun



Outline of Today

1. Gradient Descent without accurate gradient

3. Example: the AdaBoost Algorithm

2. Boosting as Approximate Gradient Descent



Train Weak learner

We will choose the exponential loss, i.e., ℓ( ̂y, y) = exp(−y ⋅ ̂y)

wi = ∂ℓ( ̂yi, yi)/∂ ̂yi = − exp(− ̂yiyi)yi

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi1(h(xi) ≠ − sign(wi))

= arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

𝒟̃ = {pi, xi, yi},  where ∑
i

pi = 1, pi ≥ 0,∀i

Binary classification on weighted data
|wi | = exp(− ̂yiyi) pi = |wi | /∑

j

|wj |

Q: what does it mean if  is large? pi

Wen Sun

Wen Sun

Wen Sun

Wen Sun

Wen Sun

Wen Sun



Compute learning rate

Select the best learning rate α

ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi) Ht+1 = Ht + αht+1

Compute the derivative wrt , set it to zero, and solve for α α

arg min
α>0

n

∑
i=1

ℓ(Ht(xi) + αht+1(xi), yi)

Find the best learning rate via optimization:



Put everything together: AdaBoost

For t = 1 …

Initialize H1 = h1 ∈ ℋ

Compute , and normalize wi = − yi exp(−Ht(xi)yi) pi = |wi | /∑
j

|wj | , ∀i

Run classification: ht+1 = arg min
h∈ℋ

n

∑
i=1

pi ⋅ 1(h(xi) ≠ yi)

Ht+1 = Ht +
1
2

ln
1 − ϵ

ϵ
⋅ ht+1

Weak learner’s loss ϵ =
n

∑
i:yi≠hh+1(xi)

pi // total weight of examples where  
made mistakes

ht+1

// the best α = 0.5 ln((1 − ϵ)/ϵ)

Weights can be computed incrementally (see note)

Wen Sun

Wen Sun

Wen Sun

Wen Sun



Weaker learner: axis-aligned linear 
decision boundary

h1 weights h2

h3
Final 

learner 



Take home message

Boosting combines weak learners into a stronger learner; it can reduce bias 

(e.g., it combines linear decision boundaries into a non-linear decision boundary)


