Optimization:
 Adaptive Gradient Descent

Announcements:

P2 (NB) has been released;
HW3 is coming out this afternoon

Recap on Logistic Regression

LR directly models the label generation process:
$P(y \mid x)=1 /\left(1+\exp \left(-y\left(x^{\top} w^{\star}\right)\right)\right)$

Q: what the LR model will do for a point on the hyperplane?

Recap on Logistic Regression

Apply the MLE / MAP principles:

$$
\hat{w}:=\arg \min _{w} \underbrace{\sum_{i=1}^{n} \ln \left[1+\exp \left(-y_{i}\left(w^{\top} x_{i}\right)\right)\right]+\lambda\|w\|_{2}^{2}}_{:=\ell(w)}
$$

Unfortunately, no closed-form solution, needs to use optimization techniques

Objective

Understand the State-of-art algorithms - adaptive gradient descent

Outline for Today

1. Gradient Descent (continued)
2. Adaptive Gradient Descent

Gradient Descent

Gradient descent is a general technique that can minimize a function

$$
w^{t+1}=w^{t}-\left.\eta \nabla \ell(w)\right|_{w=w_{t}}
$$

Gradient Descent

GD can decrease loss every time step w/ small learning rate

$$
\ell\left(w^{t}+\delta\right) \approx \ell\left(w^{t}\right)+\nabla \ell\left(w^{t}\right)^{\top} \delta
$$

Q: Which direction δ should point to in order to minimize the linear approximation?

$$
\begin{gathered}
\text { Set } \delta=-\eta \nabla \ell\left(w^{t}\right)(\mathrm{w} / \text { small } \eta) \text {, we have: } \\
\ell\left(w^{t}-\eta \nabla \ell\left(w^{t}\right)\right) \approx \ell\left(w^{t}\right)-\eta\left(\nabla \ell\left(w^{t}\right)\right)^{\top} \nabla \ell\left(w^{t}\right)<\ell\left(w^{t}\right)
\end{gathered}
$$

How to set learning rate η in practice?

Large η typically is bad and can lead to diverge

In theory, for convex loss,

$$
\eta=c / \sqrt{k} \text { guarantees }
$$ convergence ($1 / k$ also works, but slower)

Let's summarize by applying GD to logistic regression

Recall the objective for LR:

$$
\min _{w} \sum_{i=1}^{n} \ln \left[1+\exp \left(-y_{i}\left(w^{\top} x_{i}\right)\right)\right]+\lambda\|w\|_{2}^{2}
$$

Initialize $w^{0} \in \mathbb{R}^{d}$
Iterate until convergence:

1. Compute gradient $g^{t}=\sum_{i} \frac{\exp \left(-y_{i} x_{i}^{\top} w^{t}\right)\left(-y_{i} x_{i}\right)}{1+\exp \left(-y_{i} x_{i}^{\top} w^{t}\right)}+2 \lambda w^{t}$
2. Update (GD): $w^{t+1}=w^{t}-\eta g^{t}$

Outline for Today

1. Gradient Descent (continued)
2. Adaptive Gradient Descent

Potential Issue of Gradient Descent

$$
w^{t+1}=w^{t}-\left.\eta \nabla \ell(w)\right|_{w=w^{t}}
$$

It uses the same learning rate η for all dimension

Consider a function

$$
\ell(w)=w[1]^{2}+0.1 w[2]^{2}
$$

$$
\nabla \ell(w)=\left[\begin{array}{c}
2 w[1] \\
0.2 w[2]
\end{array}\right]
$$

Adaptive Gradient Descent (AdaGrad)

Key idea: make learning rate dependent on dim, and update it during optimization

For each $\operatorname{dim} j \in[d]$:

$$
z^{t}[j]=\sum_{i=1}^{t}\left(g^{t}[j]\right)^{2}
$$

Update the j-th coordinate as follows:
A dim-dependent adaptive learning rate!

$$
w^{t+1}[j]=w^{t}[j]-\frac{\eta}{\sqrt{z^{t}[j]+\epsilon}} g^{t}[j]
$$

Adaptive Gradient Descent (AdaGrad)

Put everything together (vectorized form)

Initialize $w^{0} \in \mathbb{R}^{d}, z^{0}=0$
While not converged:

$$
\begin{aligned}
& \text { Compute } g^{t}=\left.\nabla \ell(w)\right|_{w=w^{t}} \\
& \text { Compute } z^{t}=z^{t-1}+g^{t *} g^{t} \\
& \text { Update } w^{t+1}=w^{t}-\eta \cdot \operatorname{diag}\left(1 / \sqrt{z^{t}}\right) g^{t}
\end{aligned}
$$

Visualization of AdaGrad VS GD

$$
\begin{gathered}
\text { Demo: } \\
\ell(w)=w[1]^{2}+0.01 w[2]^{2}
\end{gathered}
$$

AdaGrad can make good progress on all axis

Issue of AdaGrad and GD

When the loss is non-convex, they both can get stuck at flat region (places where gradient is almost zero)

Q: what would happen if I

$$
\text { e.g., } x^{3}+0 \times y
$$

drop a ball here

Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)

Think about gradient g^{t} as "acceleration",
we estimate the "velocity" via:

$$
\begin{gathered}
v^{t}=\alpha v^{t-1}+(1-\alpha) g^{t} \\
\left(v^{t}=\alpha^{t-1}(1-\alpha) g^{1}+\alpha^{t-2}(1-\alpha) g^{2}+\ldots+\alpha(1-\alpha) g^{t-1}+(1-\alpha) g^{t}\right)
\end{gathered}
$$

Gradient Descent with Momentum

Putting things together:

Initialize $w^{1} \in \mathbb{R}^{d}, v^{0}=0$
For $t=1 \ldots$.
Compute $g^{t}=\left.\nabla \ell(w)\right|_{w=w^{t}}$
Compute momentum $v^{t}=\alpha \nu^{t-1}+(1-\alpha) g^{t}$
Update $w^{t+1}=w^{t}-\eta \nu^{t} \cdot \frac{1}{1-\alpha^{t}}$

Adam (Adaptive Momentum Estimation)

Adam is the most widely used optimizer for training neural network today!
Adam = Momentum + AdaGrad
(The second paper reading quiz)

Even w/ AdaGrad + Momentum, we may still have issue

e.g., saddle point $x^{2}-y^{2}$

Summary

Gradient-based optimization methods:

GD: simply follow the negative of the gradient

AdaGrad - each dim has its own learning rate, adapted based on the cumulation of the past squared derivatives - help make progress along all axises.

GD w/ momentum: think about gradient as "acceleration", "velocity" is the exponential average of "acceleration" - help power through very flat region

Adam: Momentum + AdaGrad

