
Optimization:
Adaptive Gradient Descent

Announcements:

P2 (NB) has been released;

HW3 is coming out this afternoon

Recap on Logistic Regression

LR directly models the label
generation process:

P(y |x) = 1/(1 + exp(−y(x⊤w⋆)))

Recap on Logistic Regression

LR directly models the label
generation process:

P(y |x) = 1/(1 + exp(−y(x⊤w⋆))) w⋆

Recap on Logistic Regression

LR directly models the label
generation process:

P(y |x) = 1/(1 + exp(−y(x⊤w⋆))) w⋆

Q: what the LR model will do for a point on
the hyperplane?

Recap on Logistic Regression

Apply the MLE / MAP principles:

ŵ := arg min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

:=ℓ(w)

Recap on Logistic Regression

Apply the MLE / MAP principles:

ŵ := arg min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

:=ℓ(w)

Unfortunately, no closed-form solution, needs to use optimization techniques

Objective

Understand the State-of-art algorithms — adaptive gradient descent

Outline for Today

2. Adaptive Gradient Descent

1. Gradient Descent (continued)

Gradient Descent

Gradient descent is a general technique that can minimize a function

Gradient Descent

Gradient descent is a general technique that can minimize a function

wt+1 = wt − η∇ℓ(w) |w=wt

Gradient Descent

Gradient descent is a general technique that can minimize a function

wt+1 = wt − η∇ℓ(w) |w=wt

Gradient Descent

Gradient descent is a general technique that can minimize a function

wt+1 = wt − η∇ℓ(w) |w=wt

wt

Gradient Descent

Gradient descent is a general technique that can minimize a function

wt+1 = wt − η∇ℓ(w) |w=wt

wt

ℓ(wt) + ∇ℓ(wt)⊤(w − wt)

First-order Taylor
expansion at :wt

Gradient Descent

Gradient descent is a general technique that can minimize a function

wt+1 = wt − η∇ℓ(w) |w=wt

wt

ℓ(wt) + ∇ℓ(wt)⊤(w − wt)

First-order Taylor
expansion at :wt

Gradient Descent

Gradient descent is a general technique that can minimize a function

wt+1 = wt − η∇ℓ(w) |w=wt

wt

ℓ(wt) + ∇ℓ(wt)⊤(w − wt)

First-order Taylor
expansion at :wt

wt+1

Gradient Descent

Gradient descent is a general technique that can minimize a function

wt+1 = wt − η∇ℓ(w) |w=wt

wt

ℓ(wt) + ∇ℓ(wt)⊤(w − wt)

First-order Taylor
expansion at :wt

wt+1

Gradient Descent

GD can decrease loss every time step w/ small learning rate

Gradient Descent

GD can decrease loss every time step w/ small learning rate

ℓ(wt + δ) ≈ ℓ(wt) + ∇ℓ(wt)⊤δ

Gradient Descent

GD can decrease loss every time step w/ small learning rate

ℓ(wt + δ) ≈ ℓ(wt) + ∇ℓ(wt)⊤δ

Q: Which direction should point to in order to minimize the linear approximation? δ

Gradient Descent

GD can decrease loss every time step w/ small learning rate

ℓ(wt + δ) ≈ ℓ(wt) + ∇ℓ(wt)⊤δ

Q: Which direction should point to in order to minimize the linear approximation? δ

Set (w/ small), we have: δ = − η∇ℓ(wt) η

Gradient Descent

GD can decrease loss every time step w/ small learning rate

ℓ(wt + δ) ≈ ℓ(wt) + ∇ℓ(wt)⊤δ

Q: Which direction should point to in order to minimize the linear approximation? δ

Set (w/ small), we have: δ = − η∇ℓ(wt) η

ℓ(wt − η∇ℓ(wt)) ≈ ℓ(wt) − η(∇ℓ(wt))⊤ ∇ℓ(wt) < ℓ(wt)

How to set learning rate in practice?η

Large typically is bad and
can lead to diverge

η

How to set learning rate in practice?η

Large typically is bad and
can lead to diverge

η

How to set learning rate in practice?η

Large typically is bad and
can lead to diverge

η
In theory, for convex loss,

 guarantees
convergence (1/k also works,

but slower)

η = c/ k

How to set learning rate in practice?η

Large typically is bad and
can lead to diverge

η
In theory, for convex loss,

 guarantees
convergence (1/k also works,

but slower)

η = c/ k

Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∑
i

exp(−yix⊤
i wt)(−yixi)

1 + exp(−yix⊤
i wt) + 2λwt

Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∑
i

exp(−yix⊤
i wt)(−yixi)

1 + exp(−yix⊤
i wt) + 2λwt

2. Update (GD): wt+1 = wt − ηgt

Outline for Today

2. Adaptive Gradient Descent

1. Gradient Descent (continued)

Potential Issue of Gradient Descent
wt+1 = wt − η∇ℓ(w) |w=wt

It uses the same learning rate for all
dimension

η

Potential Issue of Gradient Descent
wt+1 = wt − η∇ℓ(w) |w=wt

It uses the same learning rate for all
dimension

η

Consider a function
ℓ(w) = w[1]2 + 0.1w[2]2

w[1] w[2]

Potential Issue of Gradient Descent
wt+1 = wt − η∇ℓ(w) |w=wt

It uses the same learning rate for all
dimension

η

∇ℓ(w) = [2w[1]
0.2w[2]]

Consider a function
ℓ(w) = w[1]2 + 0.1w[2]2

w[1] w[2]

Potential Issue of Gradient Descent
wt+1 = wt − η∇ℓ(w) |w=wt

It uses the same learning rate for all
dimension

η

∇ℓ(w) = [2w[1]
0.2w[2]]

Consider a function
ℓ(w) = w[1]2 + 0.1w[2]2

w[1] w[2]

Q: what the GD path would
look like?

Potential Issue of Gradient Descent
wt+1 = wt − η∇ℓ(w) |w=wt

It uses the same learning rate for all
dimension

η

∇ℓ(w) = [2w[1]
0.2w[2]]

Consider a function
ℓ(w) = w[1]2 + 0.1w[2]2

w[1] w[2]

Q: what the GD path would
look like?

Adaptive Gradient Descent (AdaGrad)

Key idea: make learning rate dependent on dim, and update it during optimization

Adaptive Gradient Descent (AdaGrad)

Key idea: make learning rate dependent on dim, and update it during optimization

For each dim :j ∈ [d]

zt[j] =
t

∑
i=1

(gt[j])2

Adaptive Gradient Descent (AdaGrad)

Key idea: make learning rate dependent on dim, and update it during optimization

For each dim :j ∈ [d]

zt[j] =
t

∑
i=1

(gt[j])2

Update the j-th coordinate as follows:

wt+1[j] = wt[j] − η
zt[j] + ϵ

gt[j]

Adaptive Gradient Descent (AdaGrad)

Key idea: make learning rate dependent on dim, and update it during optimization

For each dim :j ∈ [d]

zt[j] =
t

∑
i=1

(gt[j])2

Update the j-th coordinate as follows:

wt+1[j] = wt[j] − η
zt[j] + ϵ

gt[j]

A dim-dependent
adaptive learning rate!

Adaptive Gradient Descent (AdaGrad)
Put everything together (vectorized form)

Initialize , w0 ∈ ℝd z0 = 0

While not converged:

Compute gt = ∇ℓ(w) |w=wt

Adaptive Gradient Descent (AdaGrad)
Put everything together (vectorized form)

Initialize , w0 ∈ ℝd z0 = 0

While not converged:

Compute gt = ∇ℓ(w) |w=wt

Compute zt = zt−1 + gt * gt

Adaptive Gradient Descent (AdaGrad)
Put everything together (vectorized form)

Initialize , w0 ∈ ℝd z0 = 0

While not converged:

Compute gt = ∇ℓ(w) |w=wt

Compute zt = zt−1 + gt * gt

Update wt+1 = wt − η ⋅ diag(1/ zt)gt

Visualization of AdaGrad VS GD

Demo:
ℓ(w) = w[1]2 + 0.01w[2]2

Visualization of AdaGrad VS GD

Demo:
ℓ(w) = w[1]2 + 0.01w[2]2

AdaGrad can make good progress on
all axis

 Issue of AdaGrad and GD
When the loss is non-convex, they both can get stuck at flat

region (places where gradient is almost zero)

e.g., x3 + 0 × y

 Issue of AdaGrad and GD
When the loss is non-convex, they both can get stuck at flat

region (places where gradient is almost zero)

e.g., x3 + 0 × y

GD and Adagrad will
get stuck here

 Issue of AdaGrad and GD
When the loss is non-convex, they both can get stuck at flat

region (places where gradient is almost zero)

e.g., x3 + 0 × y

GD and Adagrad will
get stuck here

Q: what would happen if I
drop a ball here

Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)

Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)

Think about gradient as “acceleration",
we estimate the “velocity” via:

gt

vt = αvt−1 + (1 − α)gt

Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)

Think about gradient as “acceleration",
we estimate the “velocity” via:

gt

vt = αvt−1 + (1 − α)gt

(vt = αt−1(1 − α)g1 + αt−2(1 − α)g2 + … + α(1 − α)gt−1 + (1 − α)gt)

Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)

Think about gradient as “acceleration",
we estimate the “velocity” via:

gt

vt = αvt−1 + (1 − α)gt

Exponential average

(vt = αt−1(1 − α)g1 + αt−2(1 − α)g2 + … + α(1 − α)gt−1 + (1 − α)gt)

Gradient Descent with Momentum

Putting things together:

Initialize , w1 ∈ ℝd v0 = 0

For t = 1 ….

Compute gt = ∇ℓ(w) |w=wt

Gradient Descent with Momentum

Putting things together:

Initialize , w1 ∈ ℝd v0 = 0

For t = 1 ….

Compute gt = ∇ℓ(w) |w=wt

Compute momentum vt = αvt−1 + (1 − α)gt

Gradient Descent with Momentum

Putting things together:

Initialize , w1 ∈ ℝd v0 = 0

For t = 1 ….

Compute gt = ∇ℓ(w) |w=wt

Compute momentum vt = αvt−1 + (1 − α)gt

Update wt+1 = wt − ηvt ⋅ 1
1 − αt

Demo of GD w/ Momentum

e.g., x3 + 0 × y

Adam (Adaptive Momentum Estimation)

Adam is the most widely used optimizer for training neural network today!

Adam = Momentum + AdaGrad

(The second paper reading quiz)

Even w/ AdaGrad + Momentum, we may still have issue

e.g., saddle point x2 − y2

Even w/ AdaGrad + Momentum, we may still have issue

e.g., saddle point x2 − y2

Can stuck at the saddle point

Even w/ AdaGrad + Momentum, we may still have issue

e.g., saddle point x2 − y2

Can stuck at the saddle point

We will revisit this next Tuesday

Summary

Gradient-based optimization methods:

GD: simply follow the negative of the gradient

AdaGrad — each dim has its own learning rate, adapted based on the cumulation of
the past squared derivatives — help make progress along all axises.

GD w/ momentum: think about gradient as “acceleration”, “velocity” is the exponential
average of “acceleration” — help power through very flat region

Adam: Momentum + AdaGrad

