
Optimization:  
Adaptive Gradient Descent

 



Announcements:

P2 (NB) has been released; 

HW3 is coming out this afternoon
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Q: what the LR model will do for a point on 
the hyperplane?  
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Recap on Logistic Regression

Apply the MLE / MAP principles: 

ŵ := arg min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

:=ℓ(w)

Unfortunately, no closed-form solution, needs to use optimization techniques



Objective

Understand the State-of-art algorithms — adaptive gradient descent



Outline for Today

2. Adaptive Gradient Descent

1. Gradient Descent (continued)
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Gradient Descent

GD can decrease loss every time step w/ small learning rate

ℓ(wt + δ) ≈ ℓ(wt) + ∇ℓ(wt)⊤δ

Q: Which direction  should point to in order to minimize the linear approximation? δ

Set  (w/ small ), we have: δ = − η∇ℓ(wt) η

ℓ(wt − η∇ℓ(wt)) ≈ ℓ(wt) − η(∇ℓ(wt))⊤ ∇ℓ(wt) < ℓ(wt)
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Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∑
i

exp(−yix⊤
i wt)(−yixi)

1 + exp(−yix⊤
i wt) + 2λwt

2. Update (GD): wt+1 = wt − ηgt
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1. Gradient Descent (continued)
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Adaptive Gradient Descent (AdaGrad)

Key idea: make learning rate dependent on dim, and update it during optimization

For each dim :j ∈ [d]

zt[ j] =
t

∑
i=1

(gt[ j])2

Update the j-th coordinate as follows:

wt+1[ j] = wt[ j] − η
zt[ j] + ϵ

gt[ j]

A dim-dependent 
adaptive learning rate!



Adaptive Gradient Descent (AdaGrad)
Put everything together (vectorized form)

Initialize , w0 ∈ ℝd z0 = 0

While not converged:

Compute gt = ∇ℓ(w) |w=wt



Adaptive Gradient Descent (AdaGrad)
Put everything together (vectorized form)

Initialize , w0 ∈ ℝd z0 = 0

While not converged:

Compute gt = ∇ℓ(w) |w=wt

Compute zt = zt−1 + gt * gt



Adaptive Gradient Descent (AdaGrad)
Put everything together (vectorized form)

Initialize , w0 ∈ ℝd z0 = 0

While not converged:

Compute gt = ∇ℓ(w) |w=wt

Compute zt = zt−1 + gt * gt

Update wt+1 = wt − η ⋅ diag(1/ zt)gt
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Visualization of AdaGrad VS GD

Demo:
ℓ(w) = w[1]2 + 0.01w[2]2

AdaGrad can make good progress on 
all axis
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 Issue of AdaGrad and GD
When the loss is non-convex, they both can get stuck at flat 

region (places where gradient is almost zero)

e.g., x3 + 0 × y

GD and Adagrad will 
get stuck here

Q: what would happen if I 
drop a ball here 



Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)



Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)

Think about gradient  as “acceleration", 
we estimate the “velocity” via: 

gt

vt = αvt−1 + (1 − α)gt



Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)

Think about gradient  as “acceleration", 
we estimate the “velocity” via: 

gt

vt = αvt−1 + (1 − α)gt

(vt = αt−1(1 − α)g1 + αt−2(1 − α)g2 + … + α(1 − α)gt−1 + (1 − α)gt)



Gradient Descent (GD) with Momentum

Possible solution to escape the flat gradient is to use momentum
(The idea is motivated from physics)

Think about gradient  as “acceleration", 
we estimate the “velocity” via: 

gt

vt = αvt−1 + (1 − α)gt

Exponential average

(vt = αt−1(1 − α)g1 + αt−2(1 − α)g2 + … + α(1 − α)gt−1 + (1 − α)gt)
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Gradient Descent with Momentum

Putting things together:

Initialize , w1 ∈ ℝd v0 = 0

For t = 1 ….

Compute gt = ∇ℓ(w) |w=wt

Compute momentum  vt = αvt−1 + (1 − α)gt

Update wt+1 = wt − ηvt ⋅ 1
1 − αt



Demo of GD w/ Momentum

e.g., x3 + 0 × y



Adam (Adaptive Momentum Estimation)

Adam is the most widely used optimizer for training neural network today!

Adam = Momentum + AdaGrad

(The second paper reading quiz)
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Even w/ AdaGrad + Momentum, we may still have issue

e.g., saddle point x2 − y2

Can stuck at the saddle point

We will revisit this next Tuesday



Summary

Gradient-based optimization methods: 

GD: simply follow the negative of the gradient  

AdaGrad — each dim has its own learning rate, adapted based on the cumulation of 
the past squared derivatives — help make progress along all axises.  


GD w/ momentum: think about gradient as “acceleration”, “velocity” is the exponential 
average of “acceleration” — help power through very flat region


Adam: Momentum + AdaGrad


