Support Vector Machine

Announcements

1. Prelim Conflict form is going out soon

2. Prelim practice: we will release previous semesters' prelims w/ solutions

3. HW4 will be out today, P4 will be out Thursday

Understand the Support Vector Machine (SVM) — a turnkey classification algorithm

Goal for today

Outline for Today

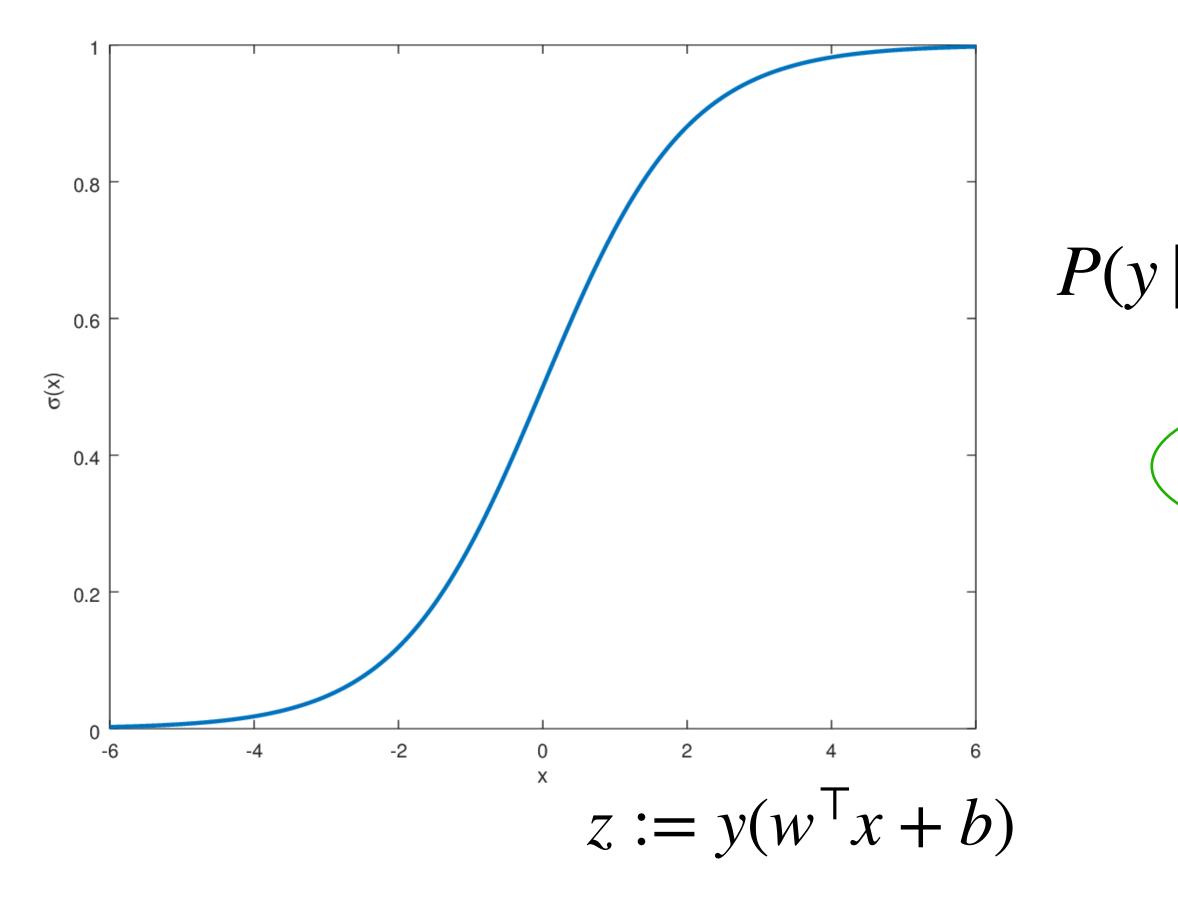
1. Functional Margin & Geometric Margin

2. Support Vector Machine for separable data

3. SVM for non-separable data

Recall Logistic Regression

Logistic Regression asumes $P(y | x; w, b) = \frac{1}{1 + \exp(-y(w^{T}x + b))}$



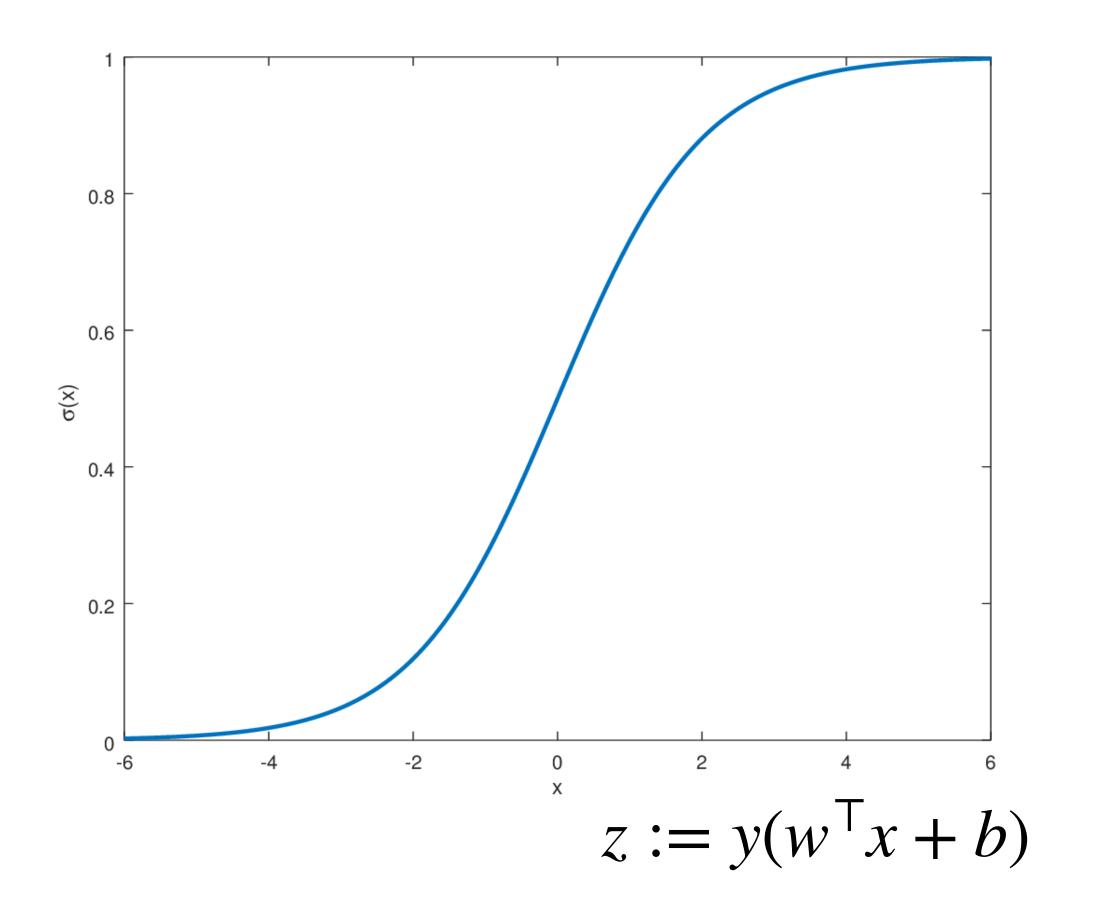
Given (x, y), our model predict label y, if P(y|x;w,b) > 0.5, or equivalently $y(w^{T}x + b) > 0$

Larger $y(w^{T}x + b) \rightarrow \text{larger } P(y | x; w, b)$

Functional margin "confidence"

Recall Logistic Regression

Logistic Regression asumes P(



$$(y | x; w, b) = \frac{1}{1 + \exp(-y(w^{\mathsf{T}}x + b))}$$

A good classifier should have large functional margin on training examples:

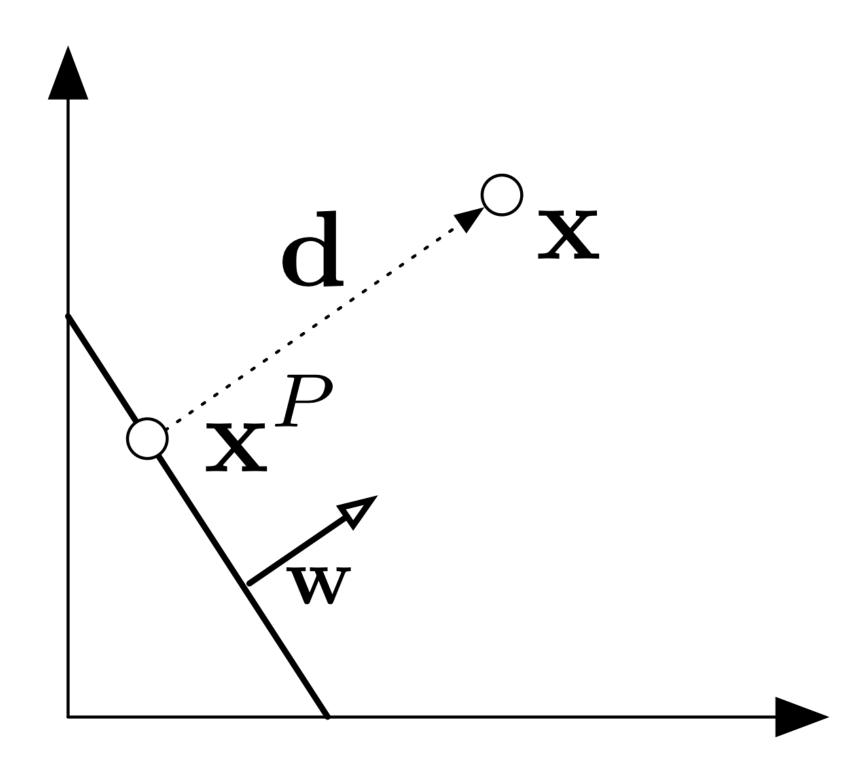
For all (x_i, y_i) , $y_i(w^T x_i + b) \gg 0$

However, functional margin is NOT scaleinvariant:

Consider (2w, 2b): functional margin is doubled

Geometric Margin

Hyperplane defined by (w, b), i.e., ${x: w^{\mathsf{T}}x + b = 0}$



Fact 1. $x - x^P$ is parallel to w: $x - x^p = \alpha w$

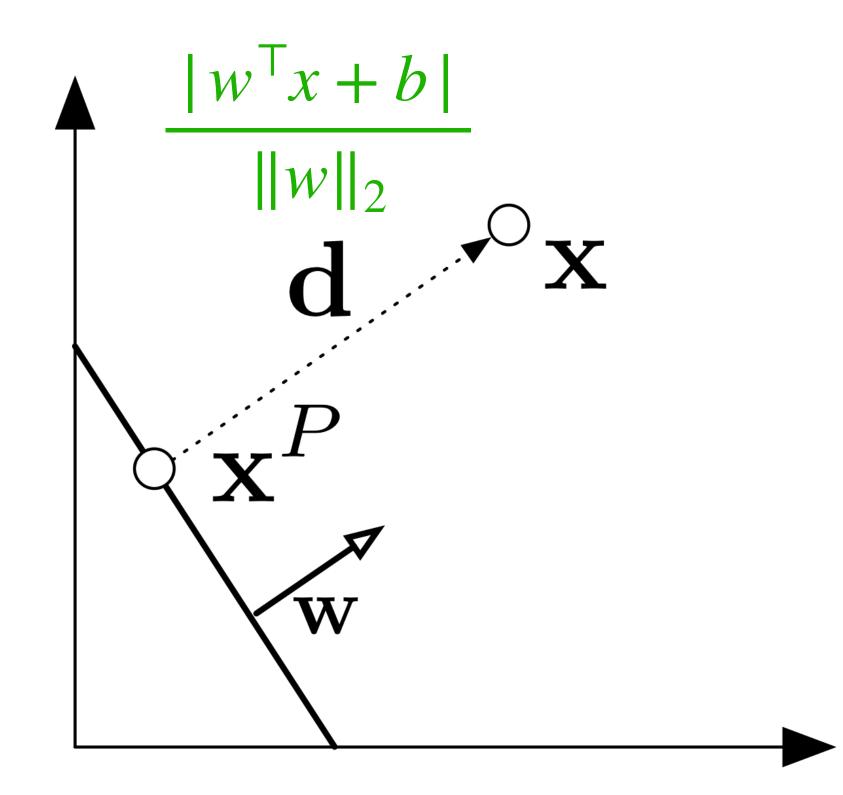
Fact 2. x^p is on the hyperplane: $w^{\mathsf{T}}x^P + h = 0$

Fact 1 + fact 2 implies:

 $w^{\mathsf{T}}(x - \alpha w) + b = 0 \rightarrow \alpha = (w^{\mathsf{T}}x + b)/||w||_2^2$ Final step: $|w^{\top}x + b|$ $d = ||x - x^p||_2 = ||\alpha w||_2$ $\|w\|_2$

Geometric Margin is Scale Invariant

Hyperplane defined by (w, b), i.e., $\{x : w^{\mathsf{T}}x + b = 0\}$



We scale (w, b) by a constant $\gamma \in \mathbb{R}^+$

Q: is the hyperplane defined by $(\gamma w, \gamma b)$ different?

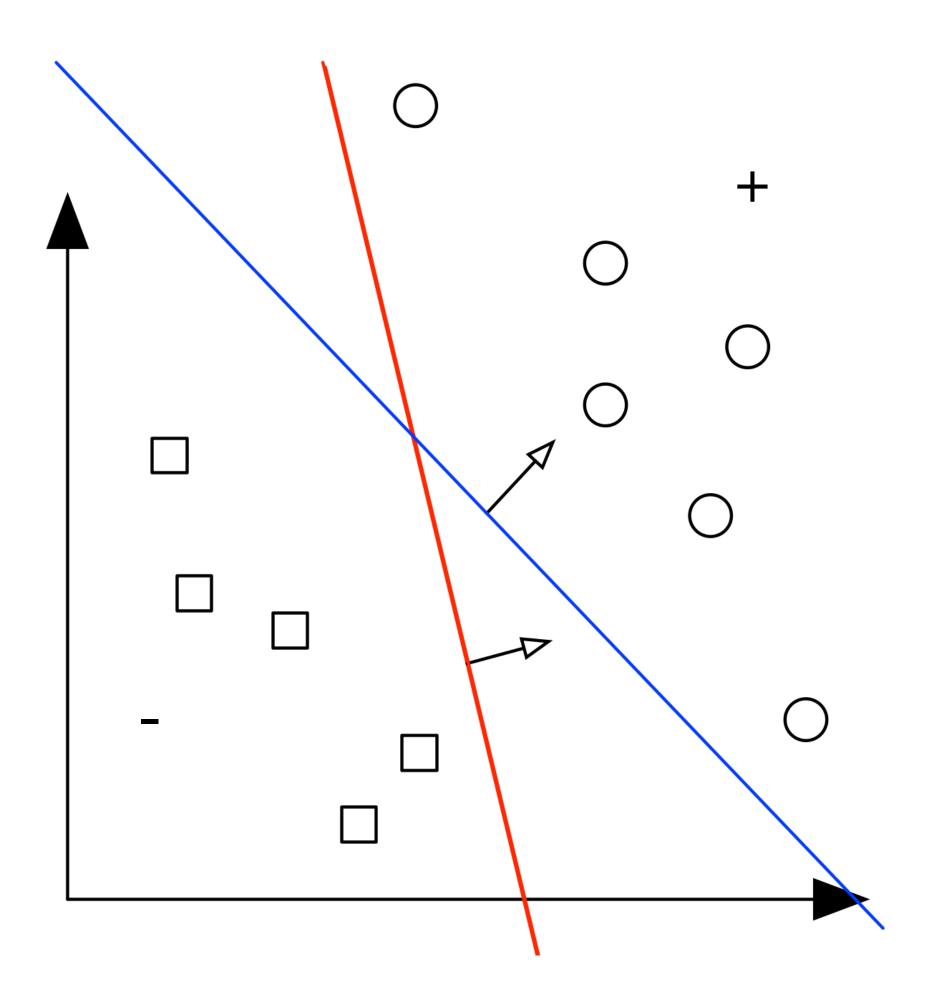
Q: does the margin change?

Hyperplane & Geometric margin are scale invariant!

Outline for Today

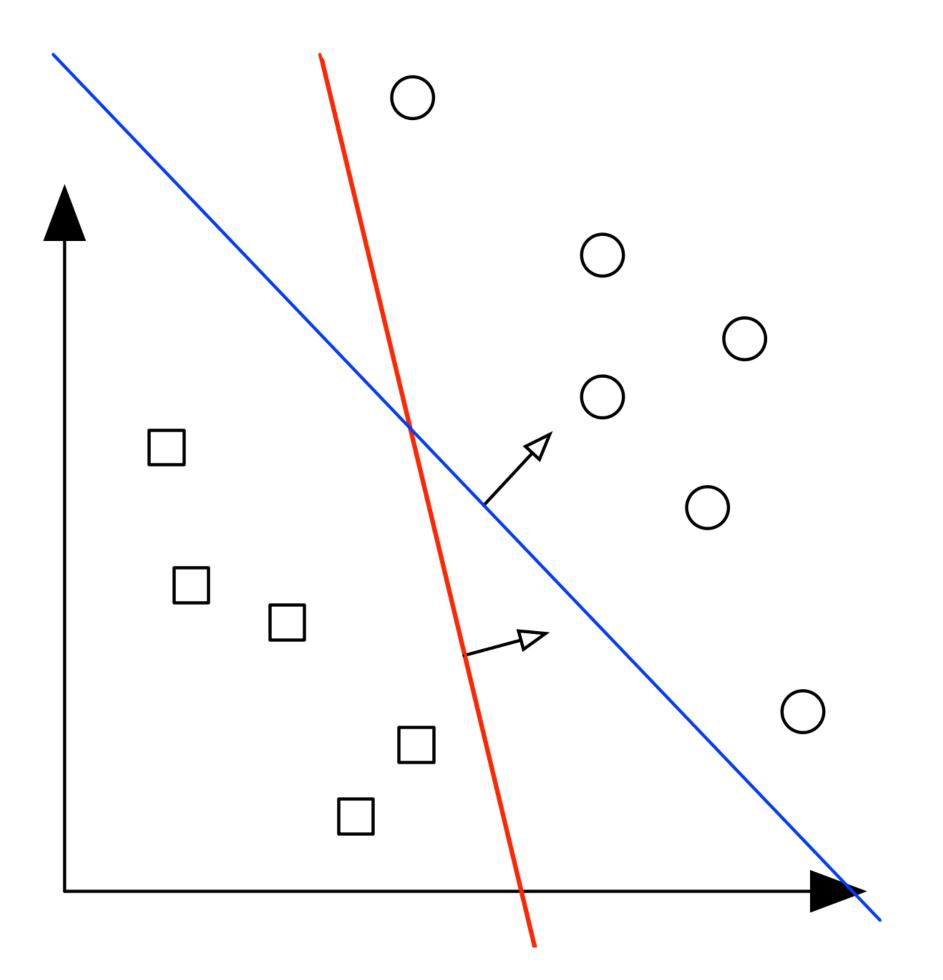
- 1. Functional Margin & Geometric Margin
- 2. Support Vector Machine for separable data
 - 3. SVM for non-separable data

Which linear classifier is Better?



Both hyperplanes correctly separate the data

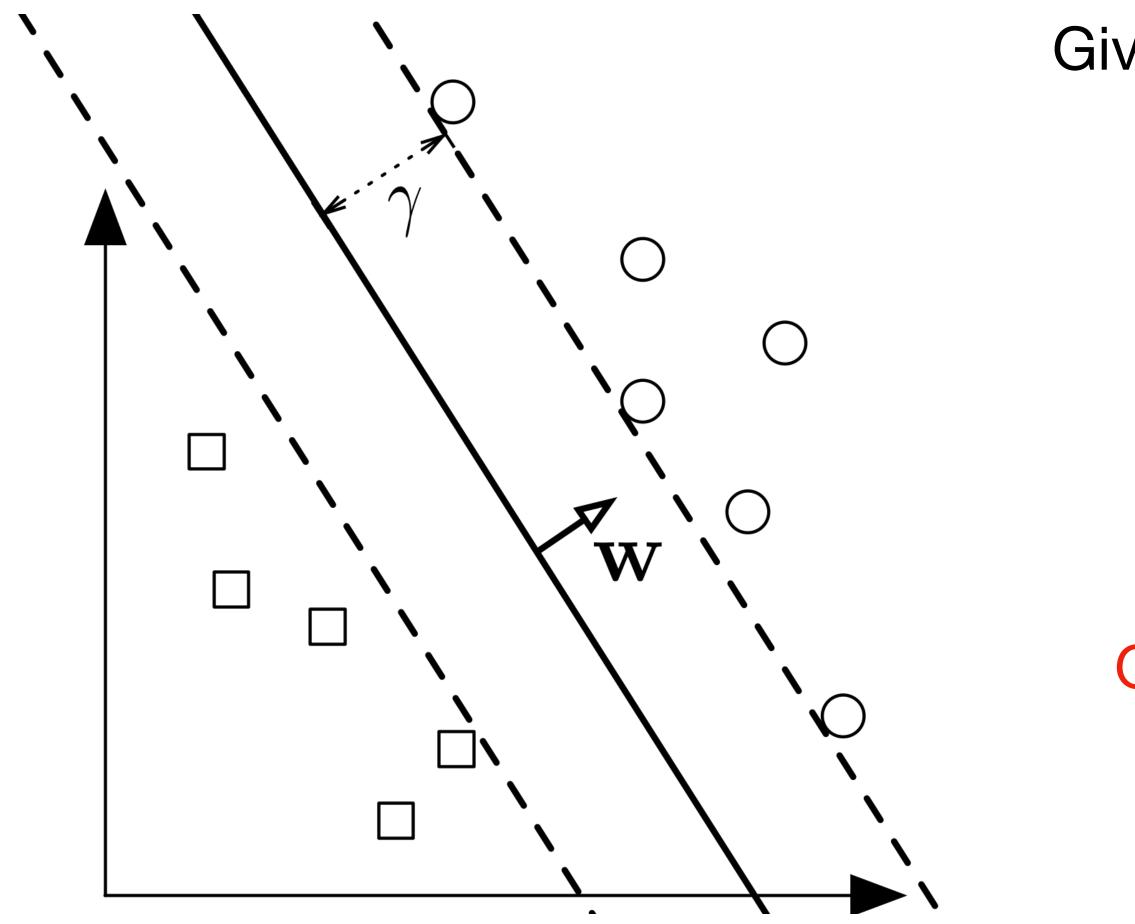
Max Margin Classifier



The Goal of SVM:

Find a hyperplane that has the largest Geometric margin

Max Margin Classifier



Given a linearly separable dataset $\{x_i, y_i\}_{i=1}^n$, the minimum geometric margin is defined as

$$\gamma(w,b) := \min_{x_i \in \mathscr{D}} \frac{|x_i^\top w + b|}{\|w\|_2}$$

Goal: we want to find (w, b) s.t. it separates the data, and maximizes $\gamma(w, b)$

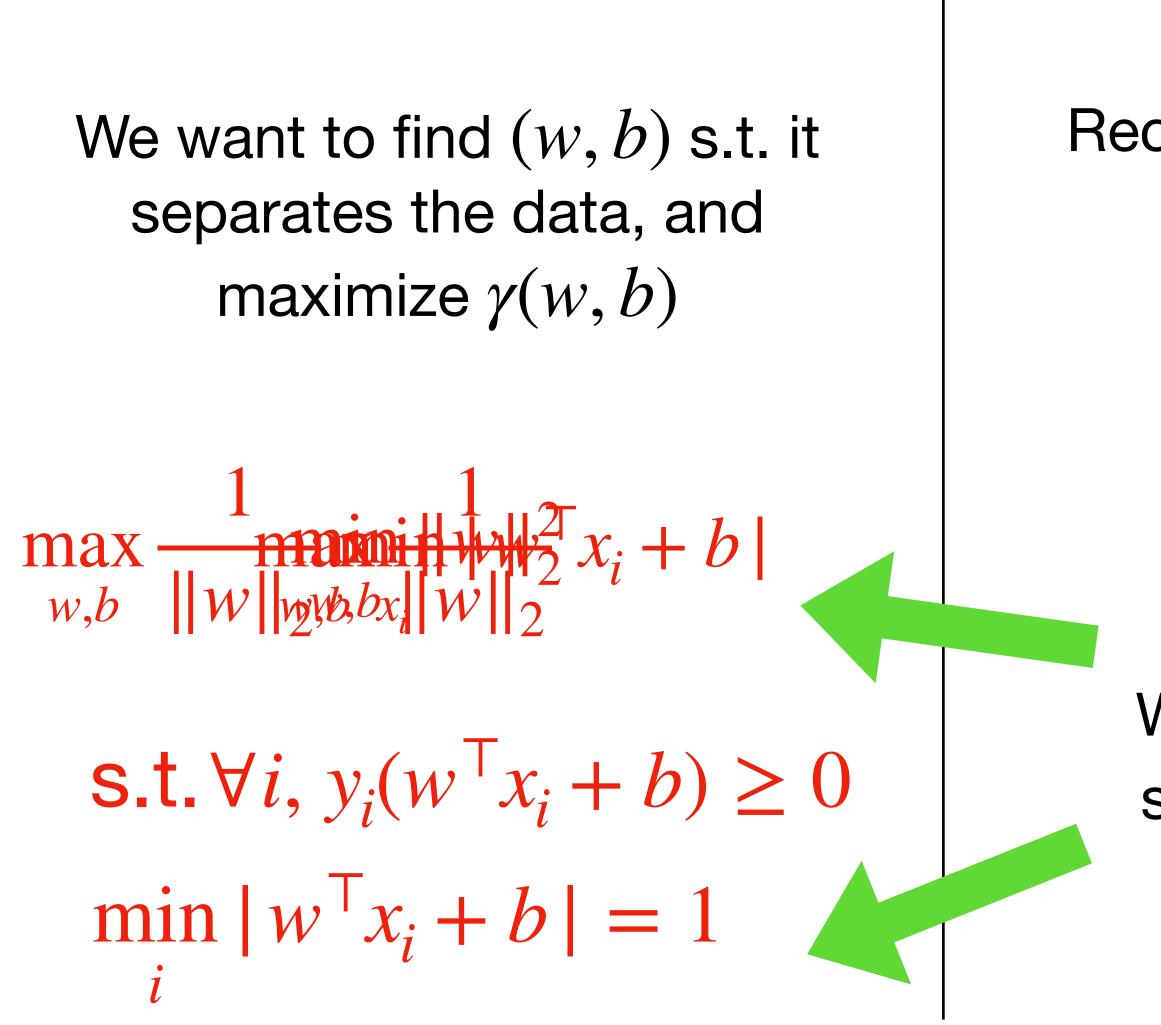
Max Margin Classifier

 \bigcirc \bigcirc \bigcirc \mathbf{W}

We want to find (w, b) s.t. it separates the data, and maximizes $\gamma(w, b)$

 $\max \gamma(w, b)$ w,b s.t. $\forall i, y_i(w^{\mathsf{T}}x_i + b) \ge 0$ Plug in the def of $\gamma(w, b)$: $\max_{w,b} \frac{1}{\|w\|_2} \min_{x_i} |w^{\mathsf{T}}x_i + b|$ s.t. $\forall i, y_i(w^{\top}x_i + b) \ge 0$

SVM for separable data: Max Margin Classifier



Recall that margin & hyperplane is scale invariant

For any (w, b), we can always scale it by some constant to have $\min_{x_i} |w^{\mathsf{T}}x_i + b| = 1$

Without loss of generality, let's just focus on such (w, b) pairs with $\min_{x_i} |w^{\mathsf{T}}x_i + b| = 1$

SVM for separable data: Max Margin Classifier

 $\min_{\substack{w,b}} \|w\|_2^2$ s.t. $\forall i, y_i(w^T x_i + b) \ge 0$ $\min_i \|w^T x_i + b\| = 1$ We can further simplify the constraint

 $\min_{w,b} \|w\|_2^2$ $\forall i: y_i(w^{\mathsf{T}}x_i+b) \ge 1$

You will prove that in HW4!

Summary for Max Margin Classifier

Avoids "cheating" (i.e., scale w, b up by large constant)

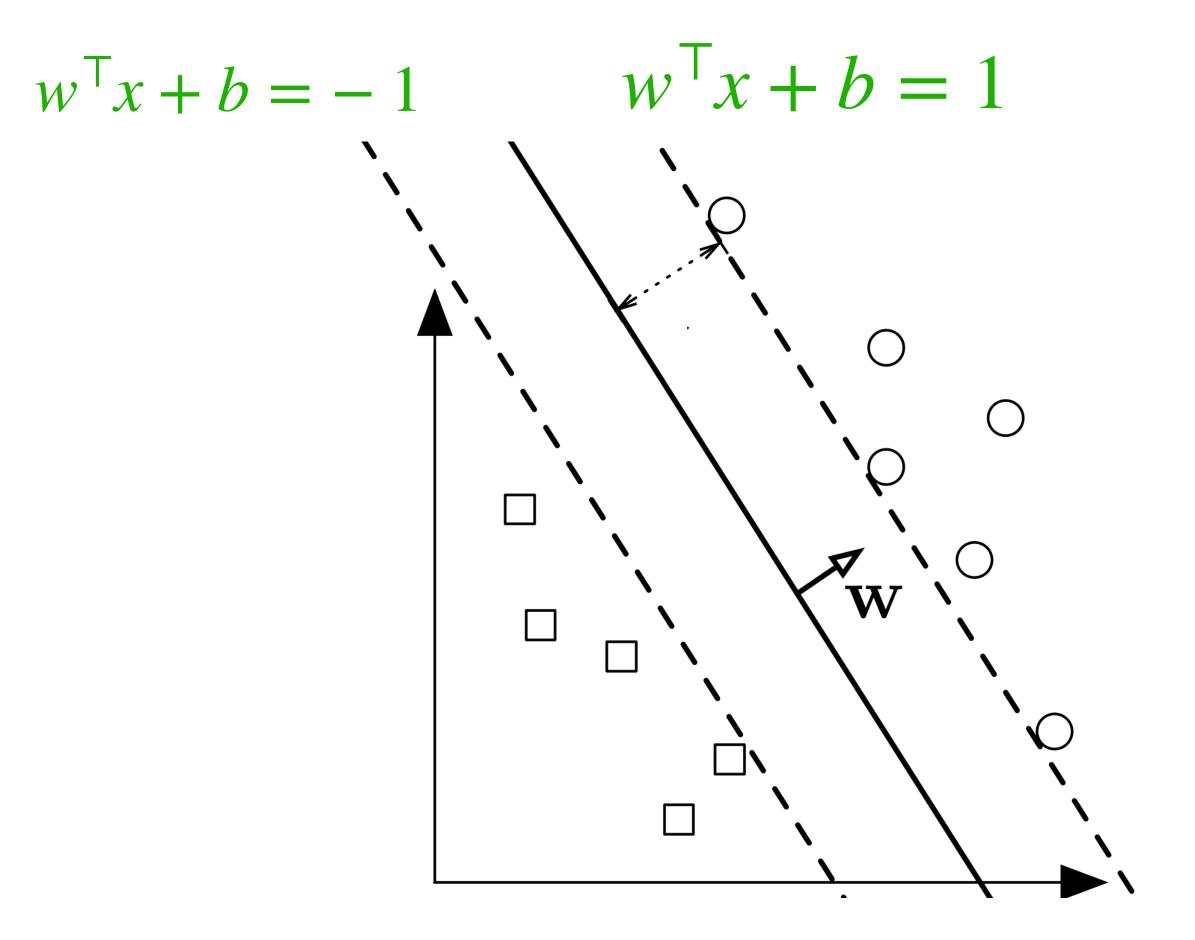
mir w,b

Not only linearly separable, but also has functional margin no less than 1

$$\begin{aligned} \min_{w,b} \|w\|_2^2 \\ \forall i: \ y_i(w^{\mathsf{T}}x_i+b) \ge 1 \end{aligned}$$

Always remember where we started: We want to find (w, b) s.t. it separates the data, and maximizes $\gamma(w,b)$

Support Vectors



for the optimal (w, b) pair, points x_i such that $y_i(w^T x_i + b) = 1$ are called **support vectors**

Outline for Today

- 1. Functional Margin & Geometric Margin
- 2. Support Vector Machine for separable data
 - 3. SVM for non-separable data

If data is not linearly separable, then **there is no** (w, b)can satisfy $\forall i : y_i(w^T x_i + b) \ge 1$

- Idea: introducing slack variables to relax the constraint, i.e., find (w, b, ξ_i) , s.t,
 - $\forall i : y_i(w^{\top})$
 - $\xi_i \ge 0$

Q: does this always has a feasible solution?

$$x_i + b) \ge 1 - \xi_i,$$

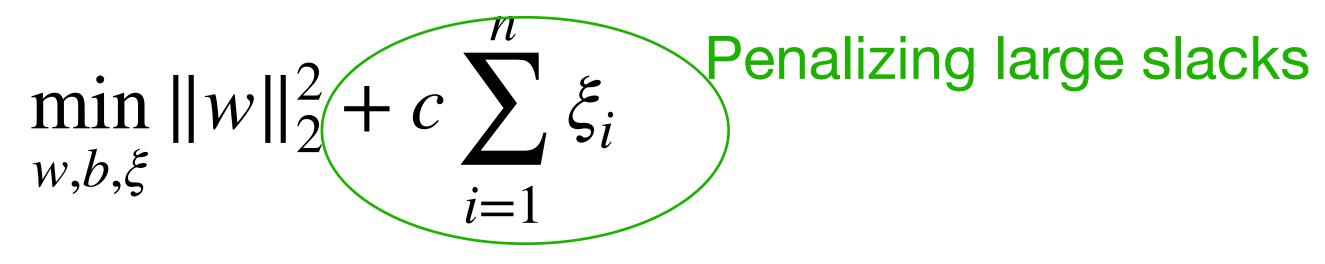
$$0, \forall i$$

Idea: introducing slack variables to relax the constraint, i.e., find (w, b, ξ_i) , st,

$$\forall i: y_i(w^{\top}x_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0$$

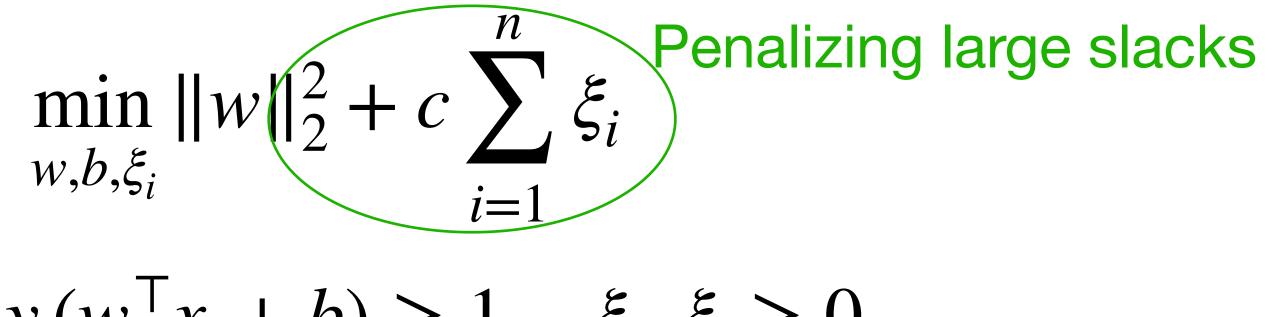
We still want our margin to be somewhat large, i.e., we want slack variables to be as small as possible

$$\forall i : y_i (w^{\top} x_i +$$

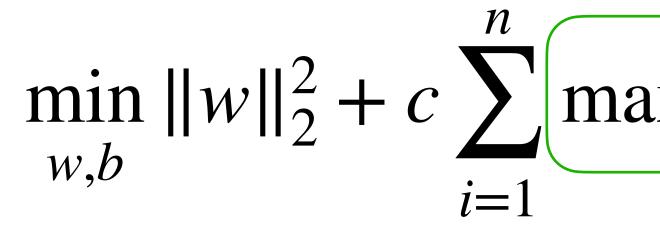


 $\vdash b) \ge 1 - \xi_i, \, \xi_i \ge 0$

 $\forall i: y_i(w^{\top}x_i+b) \ge 1-\xi_i, \xi_i \ge 0$



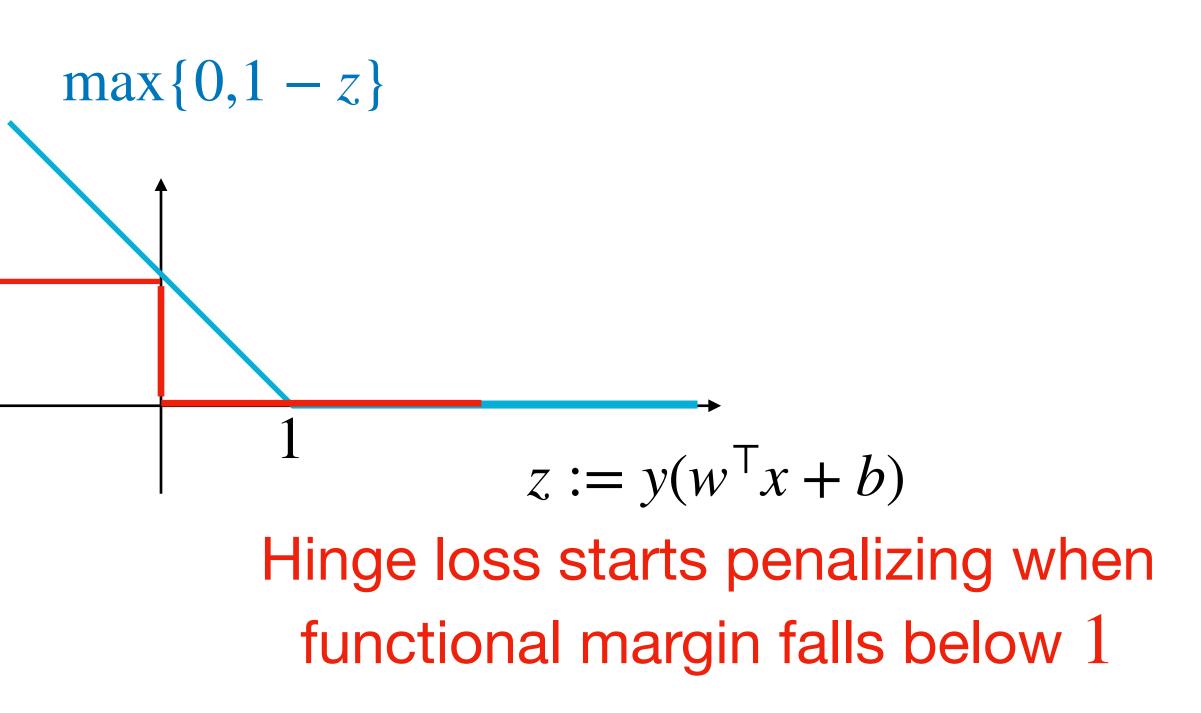
- We can turn this constrained opt to a unconstraint opt w/ a single objective.
- Q: For any fixed (w, b) pair, how to set ξ_i , such that the obj is minimized?
 - A: set $\xi_i = \max\{0, 1 y_i(w^{\top}x_i + b)\}$

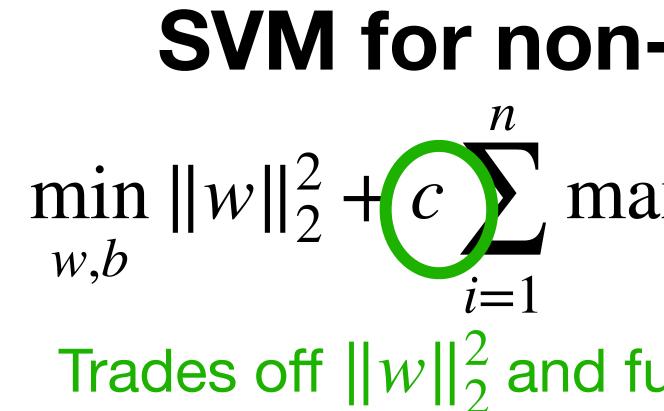


Hinge loss upper bounds zero-one loss

$$\max\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\}$$

Hinge loss





forcing $y_i(w^T x_i + b) \ge 1$ for as many data points as possible

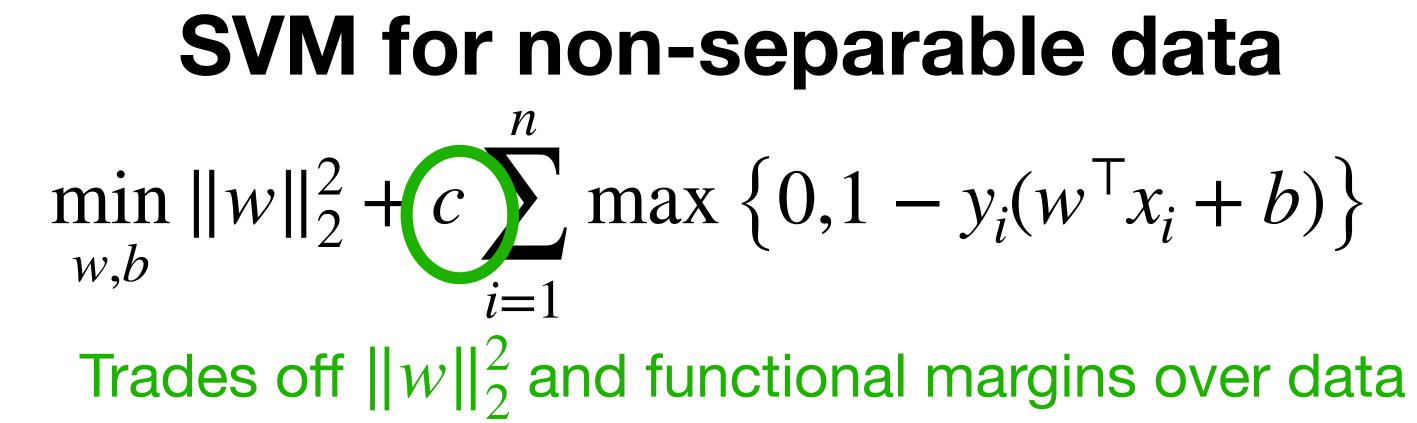
SVM for non-separable data

$$\max\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\}$$

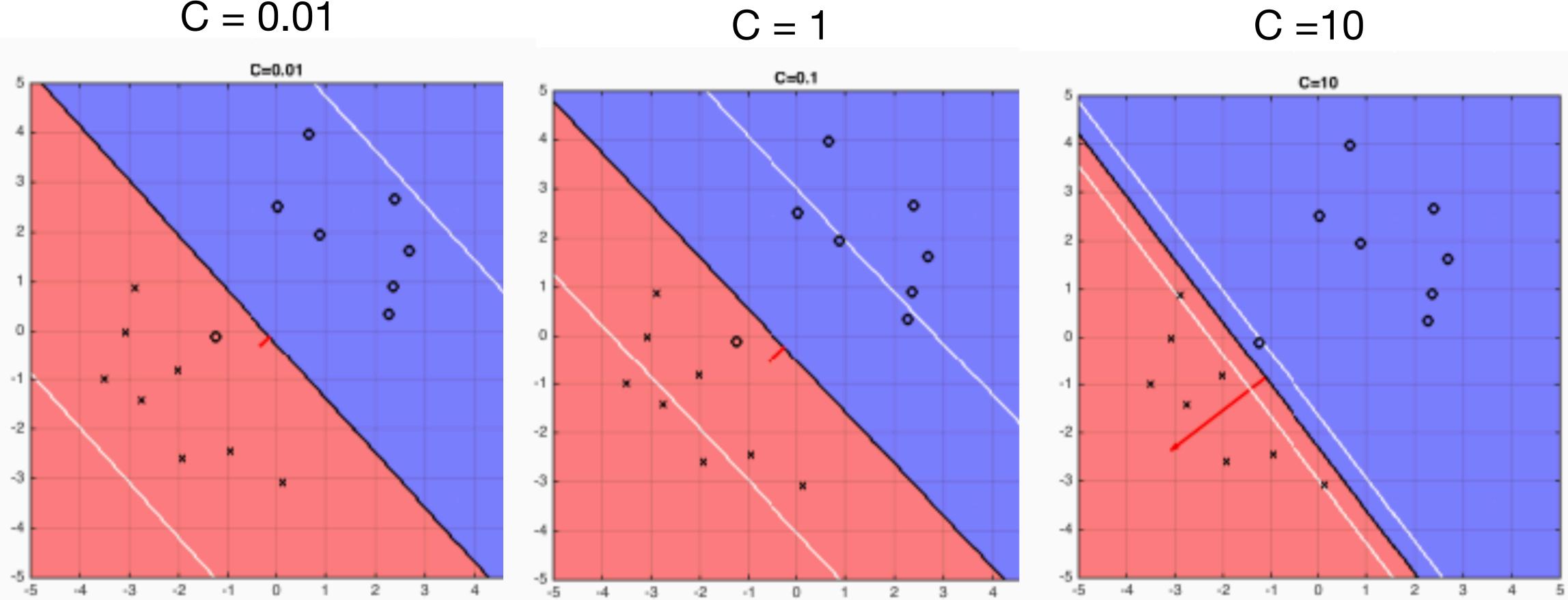
Trades off $||w||_2^2$ and functional margins over data

- When $c \rightarrow +\infty$:

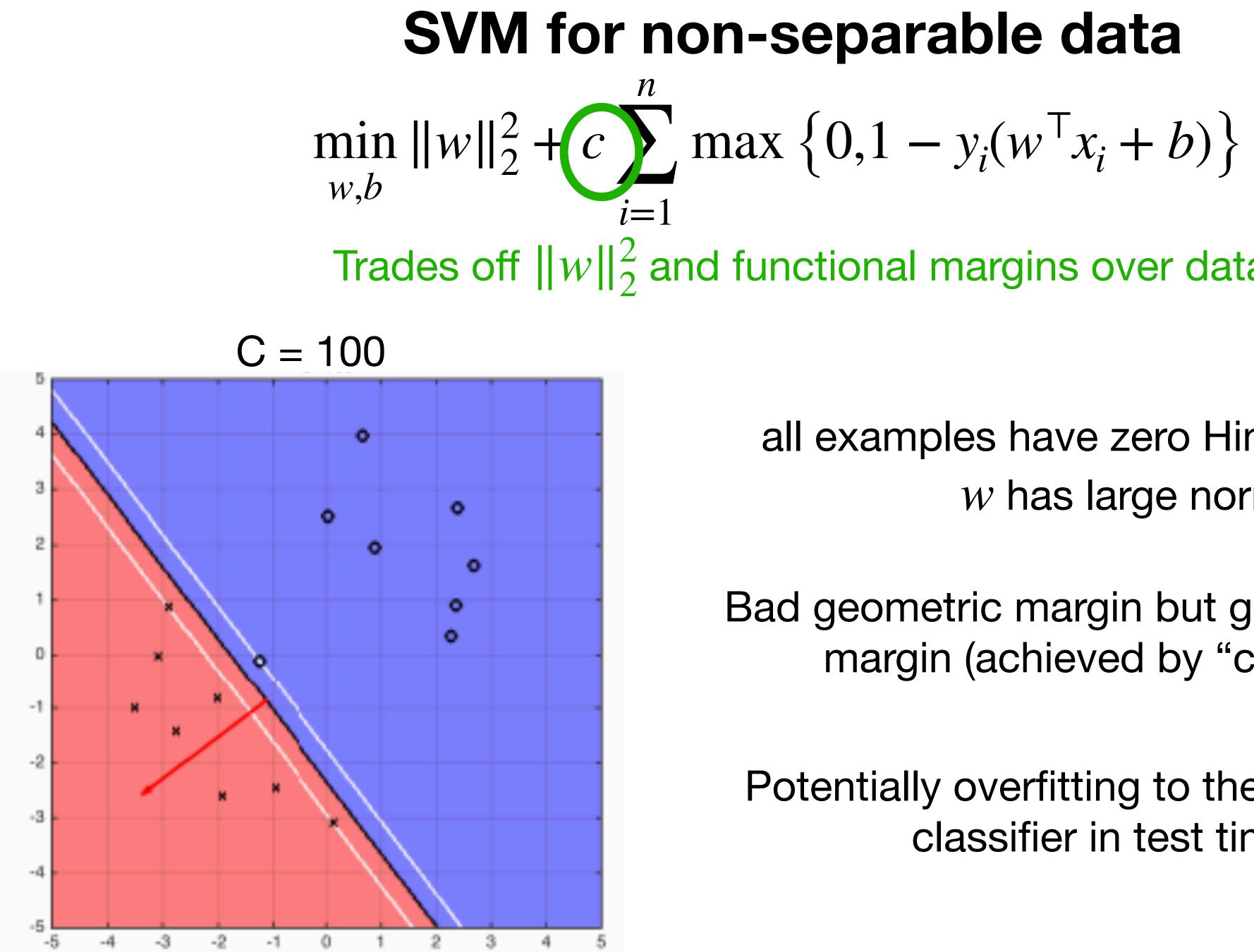
- When $c \rightarrow 0^+$:
- The solution $w \to \mathbf{0}$ (i.e., we do not care about hinge loss part)



$$C = 0.01$$



$$\max\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\}$$



Trades off $||w||_2^2$ and functional margins over data

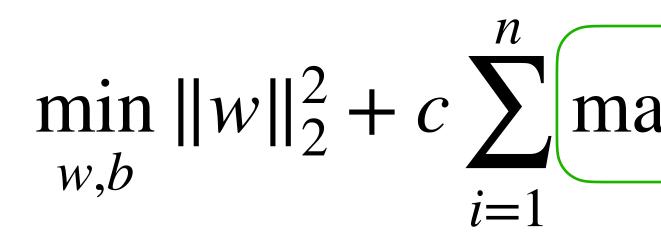
all examples have zero Hinge loss, but w has large norm

Bad geometric margin but good functional margin (achieved by "cheating")

Potentially overfitting to the noise, not a good classifier in test time maybe

Summary for today

 $\forall i : y_i(v)$



- 1. SVM for linearly separable data
 - $\min_{w,b} \|w\|_2^2$

$$v^{\mathsf{T}}x_i + b) \ge 1$$

2. SVM for non-separable data

$$ax \{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\}$$

Hinge loss