
Support Vector Machine 
(continue)



Announcements

1. Prelim Conflict form is out and due next Tue

2. P4 is going to be out this afternoon (due after prelim)



SVMs

Goal of SVM: find a hyperplane that 
(1) separates the data, (2)  is 

maximized
γ(w, b)



The SVM algorithm

∀i : yi(w⊤xi + b) ≥ 1

min
w,b

∥w∥2
2

Not only linearly separable, but also 
has functional margin no less than 1

Avoids “cheating” (i.e., scale 
 up by large constant)w, b Denote  as the optimal solution:(w, b)

Q: will there be some , such that 
?

(x, y)
y(w⊤x + b) = 1



Support Vectors
Points  such that are called support vectorsxi yi(w⊤xi + b) = 1

+

-



SVM for non-separable data

min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Hinge loss

z := y(w⊤x + b)

max{0,1 − z}

1

Hinge loss starts penalizing when 
functional margin falls below 1



SVM for non-separable data

min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Trades off  and functional margins over data∥w∥2

2

When : 

forcing  for as many data points as possible

c → + ∞
yi(w⊤xi + b) ≥ 1

When : 

The solution  (i.e., we do not care about hinge loss part)

c → 0+

w → 0



min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}



min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}

C = 0.01 C = 0.1 C =10



SVM for non-separable data

min
w,b

∥w∥2
2 + c

n

∑
i=1

max {0,1 − yi(w⊤xi + b)}
Trades off  and functional margins over data∥w∥2

2

C = 100

all examples have zero Hinge loss, but 
 has large normw

Bad geometric margin but good functional 
margin (achieved by “cheating”)

Potentially overfitting to the noise, not a good 
classifier in test time maybe



Empirical Risk Minimization



ERM

Recall the general supervised learning setting:

We have some distribution , dataset P 𝒟 = {xi, yi}n
i=1

Each data point is i.i.d sampled from , i.e., P xi, yi ∼ P

Hypothesis , & hypothesis class h : 𝒳 → ℝ ℋ := {h} ⊂ 𝒳 ↦ ℝ

Loss function:  ℓ(h(x), y)



ERM

The ultimate objective function:

arg min
h∈ℋ

𝔼x,y∼P [ℓ(h(x), y)]
Unknown

Instead we have its empirical version

arg min
h∈ℋ

1
n

n

∑
i=1

[ℓ(h(xi), yi)]
Empirical risk / Empirical error



The generalization error of ERM solution

ĥERM := arg min
h∈ℋ

1
n

n

∑
i=1

[ℓ(h(xi), yi)]

We often are interested in the true performance of :ĥERM

𝔼𝒟 [𝔼x,y∼Pℓ(ĥERM(x), y)]
Note  is a random quantity as 

it depends on data 
ĥERM

𝒟
e.g., In LR: . ŵ = (XX⊤)−1XY



The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

𝔼𝒟 [𝔼x,y∼Pℓ(ĥERM(x), y)] ≈ min
h∈ℋ

𝔼x,y∼Pℓ(h(x), y)

The Minimum expected loss we could 
get if we knew  P

However, this may not hold if we are not careful about designing ℋ



Example:
:  uniformly distribution 

over the square; 

Label: blue if inside the 
smaller square, else red

P x

Consider a hypothesis class contains ALL 
mappings from 

ℋ
x → y

Let us consider this solution that memorizes 
data:

ĥ(x) = {yi  if ∃i, xi = x
+1 else

Zero one loss ℓ(h(x), y) = 1(h(x) ≠ y)

−1

+1



Example:
:  uniformly distribution 

over the square; 

Label: blue if inside the 
dashed square, else red

P x

ĥ(x) = {yi  if ∃i, xi = x
+1 else

1
n

n

∑
i=1

ℓ(ĥ(xi), yi) = 0⇒

Q: But what’s the true expected error of this ? ĥ

A: area of smaller box / total area 

−1

+1



ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

ĥERM := arg min
h∈ℋ

1
n

n

∑
i=1

[ℓ(h(xi), yi)]

By restricting to , we bias towards 
solutions from 

ℋ
ℋ



Example:
:  uniformly distribution 

over the square; 

Label: blue if inside the 
dashed square, else red

P x

−1

+1

Unrestricted hypothesis class did not work;

However, if we restrict  to contains ALL 
axis-aligned rectangles, 


then ERM will succeed, i.e., 

ℋ

𝔼𝒟 [𝔼x,y∼Pℓ(ĥERM(x), y)]
≤ min

h∈ℋ
𝔼x,y∼Pℓ(h(x), y) + O(1/ n)

≤ O(1/ n)
(Exact proof out of the scope of this class — see CS 4783/5783)



Summary

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict ℋ



After Prelim

We will continue from ERM: 


Examples of loss functions, 

ways to restrict the hypothesis classes, 


why that really matters in ML (theory and practice) 


