# Support Vector Machine (continue)

1. Prelim Conflict form is out and due next Tue

2. P4 is going to be out this afternoon (due after prelim)

#### Announcements



### **SVMs**

#### Goal of SVM: find a hyperplane that (1) separates the data, (2) $\gamma(w, b)$ is maximized

# The SVM algorithm

Avoids "cheating" (i.e., scale w, b up by large constant)

$$\min_{w,b} \|w\|_2^2$$

$$\forall i: y_i(w^{\mathsf{T}}x_i + b) \ge 1$$

Not only linearly separable, but also has functional margin no less than 1

Denote (w, b) as the optimal solution:

Q: will there be some (x, y), such that  $y(w^{T}x + b) = 1$ ?

# **Support Vectors**



#### Points $x_i$ such that $y_i(w^T x_i + b) = 1$ are called **support vectors**

#### SVM for non-separable data

 $\min_{w,b} \|w\|_{2}^{2} + c \sum_{i=1}^{n} \max_{i=1}^{n} \|w\|_{2}^{2} + c \sum_{i=1}^{n} \sum_{i=1}^{n} |w|_{2}^{2} + c \sum_{i=1}^$ 

 $\max\{0, 1 - z\}$ 

$$ax \{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\}$$

Hinge loss

$$1$$

$$z := y(w^{\mathsf{T}}x + b)$$

Hinge loss starts penalizing when functional margin falls below 1



forcing  $y_i(w^T x_i + b) \ge 1$  for as many data points as possible

#### **SVM for non-separable data**

$$\max\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\}$$

Trades off  $||w||_2^2$  and functional margins over data

- When  $c \rightarrow +\infty$ :

- When  $c \rightarrow 0^+$ :
- The solution  $w \to \mathbf{0}$  (i.e., we do not care about hinge loss part)

 $\min_{w,b} \|w\|_2^2 + c \sum_{i=1}^n \max\left\{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\right\}$ i=1



$$\min_{w,b} \|w\|_{2}^{2} + c \sum_{i=1}^{n} \max_{i=1}^{n} w_{i}^{2} + c \sum_{i=1}^{n} w_{i}^{2} + c \sum_{i=1$$

C = 0.01



 $ax \{0, 1 - y_i(w^{\mathsf{T}}x_i + b)\}$ 

C = 0.1

C =10





#### **SVM for non-separable data**

Trades off  $||w||_2^2$  and functional margins over data

all examples have zero Hinge loss, but w has large norm

Bad geometric margin but good functional margin (achieved by "cheating")

Potentially overfitting to the noise, not a good classifier in test time maybe

# **Empirical Risk Minimization**

Recall the general supervised learning setting:

#### ERM

We have some distribution P, dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ 

Each data point is i.i.d sampled from P, i.e.,  $x_i, y_i \sim P$ 

Hypothesis  $h: \mathcal{X} \to \mathbb{R}$ , & hypothesis class  $\mathcal{H} := \{h\} \subset \mathcal{X} \mapsto \mathbb{R}$ 

Loss function:  $\ell(h(x), y)$ 

#### The ultimate objective function:



#### Instead we have its **empirical** version





$$\sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$$
  
Empirical risk / Empirical error

#### The generalization error of ERM solution

 $\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$ 

We often are interested in the true performance of  $\hat{h}_{ERM}$ :

$$\mathbb{E}_{\mathscr{D}} \mid \mathbb{E}_{x,y \sim F}$$

Note  $\hat{h}_{ERM}$  is a random quantity as it depends on data  $\mathscr{D}$ e.g., In LR:  $\hat{w} = (XX^{T})^{-1}XY$ .

 $P\ell(\hat{h}_{ERM}(x), y)$ 

#### The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

$$\mathbb{E}_{\mathscr{D}}\left[\mathbb{E}_{x,y\sim P}\ell(\hat{h}_{ERM}(x),y)\right] \approx \min_{h\in\mathscr{H}}\mathbb{E}_{x,y\sim P}\ell(h(x),y)$$

#### The Minimum expected loss we could get if we knew P

However, this may not hold if we are not careful about designing  $\mathscr{H}$ 

*P*: *x* uniformly distribution over the square; Label: blue if inside the smaller square, else red



#### **Example:**

Consider a hypothesis class *H* contains ALL mappings from  $x \rightarrow y$ 

Zero one loss  $\ell(h(x), y) = \mathbf{1}(h(x) \neq y)$ 

Let us consider this solution that memorizes data:

$$\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$$

*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



#### **Example:**

# $\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases}$ $\implies \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0$

Q: But what's the true expected error of this  $\hat{h}$ ?

A: area of smaller box / total area

### **ERM** with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

$$\hat{h}_{ERM} := \arg\min_{h \in \mathscr{H}} \frac{1}{n} \sum_{i=1}^{n} \left[ \ell(h(x_i), y_i) \right]$$

By restricting to  $\mathcal{H}$ , we bias towards solutions from  $\mathcal{H}$ 



*P*: *x* uniformly distribution over the square; Label: blue if inside the dashed square, else red



#### **Example:**

Unrestricted hypothesis class did not work;

However, if we restrict  $\mathscr{H}$  to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

 $\mathbb{E}_{\mathcal{D}} \mid \mathbb{E}_{x, y \sim P} \mathscr{C}(\hat{h}_{ERM}(x), y)$ 

 $\leq \min_{h \in \mathcal{H}} \mathbb{E}_{x, y \sim P} \ell(h(x), y) + O(1/\sqrt{n})$ 

 $\leq O(1/\sqrt{n})$ 

(Exact proof out of the scope of this class — see CS 4783/5783)



To guarantee small test error, we need to restrict  $\mathcal{H}$ 

#### Summary

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

### **After Prelim**

We will continue from ERM:

Examples of loss functions, ways to restrict the hypothesis classes, why that really matters in ML (theory and practice)