Sequence Model

Announcements

1. Makeup exam Dec 11
2. We will release the last reading quiz today

Recap on Convolutional neural network

Learned feature representations in CNN

Objective today

Understanding neural network structures that are suitable for natural language (i.e., sequences of words)

Outline today

1. Word-2-Vec embedding and positional embedding
2. Attention model
3. Putting things together: the Transformer model

Example: autocompletion

e.g., I went to the climbing gym and I \qquad

A Language model is a conditional probability model:

$$
\begin{gathered}
y_{1} \sim P\left(Y=\cdot x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{100 k} \\
y_{2} \sim P\left(Y=\cdot x_{1}, \ldots, x_{n}, y_{1}\right) \\
y_{m} \sim P\left(Y=\cdot x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{m-1}\right)
\end{gathered}
$$

Word to Vector Embedding

ML models only take vectors of real numbers as inputs...

Size of the English vocabulary (e.g., 100k)

Positional embedding

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

$$
u_{\text {transformer }}+p_{13} \in \mathbb{R}^{128}
$$

Create positional embedding using sin functions

High frequency

$$
p_{t}=\left[\begin{array}{c}
\frac{\sin \left(t / c_{1}\right)}{\sin \left(t / c_{2}\right)} \\
\sin \left(t / c_{128}\right)
\end{array}\right]
$$

Summary so far

We turn words into vectors of real numbers

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

$$
u_{\text {transformer }}+p_{4} \quad u_{\text {transformer }}+p_{13} \in \mathbb{R}^{128}
$$

Feature of the word + feature of the position

Outline today

1. Word-2-Vec embedding and positional embedding
2. Attention model
3. Putting things together: the Transformer model

Motivation

e.g., When I say Transformer in ML, I do not mean the transformer in the movies
e.g., When I say Transformer, I literally mean the transformer in the movies

Contextual feature: feature of a word should depend on the context around it

Self-attention

Attention head: three matrices:

$$
\begin{aligned}
& W_{q}, W_{k}, W_{v} \\
& q=W_{q} x \quad k=W_{q} x \quad v=W_{q} x \\
& \text { Query } \quad \text { key } \quad \text { value }
\end{aligned}
$$

Multi-head self-attention

Summary so far

Contextual features: e.g., x_{4}^{\prime} encodes information from all words

Outline today

1. Word-2-Vec embedding and positional embedding
2. Attention model
3. Putting things together: the Transformer model

The Transformer model: encoder

The Transformer model: decoder

cross-attention $\left(W_{q}, W_{k}, W_{v}\right)$

The Transformer model: decoder

cross-attention $\left(W_{q}, W_{k}, W_{v}\right)$

Note: we do not pay attention to future words

The Transformer model: decoder

Take home task:

Check out the the original paper (not too hard to read!)

Attention Is All You Need

