Sequence Model

1. Makeup exam Dec 11

2. We will release the last reading quiz today

Announcements

Recap on Convolutional neural network

Learned feature representations in CNN

[https://distill.pub/2017/feature-visualization/]

Objective today

Understanding neural network structures that are suitable for natural language (i.e., sequences of words)

Outline today

1. Word-2-Vec embedding and positional embedding

2. Attention model

3. Putting things together: the Transformer model

Example: autocompletion

- - $y_1 \sim P(Y =$
 - $y_2 \sim P(Y =$
 - $y_m \sim P(Y = \cdot x_1, ..., x_n, y_1, ..., y_n)$

e.g., I went to the climbing gym and I _____

A Language model is a conditional probability model:

•
$$x_1, ..., x_n) \in \mathbb{R}^{100k}$$

• $x_1, ..., x_n, y_1$
• $x_1, ..., x_n, y_1, ..., y_{m-1}$

Word to Vector Embedding

128

ML models only take vectors of real numbers as inputs...

Size of the English vocabulary (e.g., 100k)

Positional embedding

Order of the words and their positions matter...

$u_{transformer} \in \mathbb{R}^{128} + p_4 \in \mathbb{R}^{128}$

Create positional embedding using sin functions

High frequency

e.g., When I say Transformer in ML, I do not mean the transformer in the movies $u_{transformer} + p_{13} \in \mathbb{R}^{128}$

Summary so far

We turn words into vectors of real numbers

Feature of the word + feature of the position

e.g., When I say Transformer in ML, I do not mean the transformer in the movies $u_{transformer + p_{13}} \in \mathbb{R}^{128}$

Outline today

1. Word-2-Vec embedding and positional embedding

2. Attention model

3. Putting things together: the Transformer model

Motivation

e.g., When I say <u>Transformer</u> in ML, I do not mean the <u>transformer</u> in the movies

e.g., When I say <u>Transformer</u>, I literally mean the <u>transformer</u> in the movies

Contextual feature: feature of a word should depend on the context around it

Multi-head self-attention

Contextual features: e.g., x'_4 encodes information from all words

Outline today

1. Word-2-Vec embedding and positional embedding

2. Attention model

3. Putting things together: the Transformer model

The Transformer model: encoder

The Transformer model: decoder

cross-attention (W_q, W_k, W_v)

The Transformer model: decoder

cross-attention (W_q, W_k, W_v)

Note: we do not pay attention to future words

The Transformer model: decoder

Take home task:

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* [†] University of Toronto aidan@cs.toronto.edu

Illia Polosukhin* [‡] illia.polosukhin@gmail.com

Check out the the original paper (not too hard to read!)

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research

usz@google.com

Łukasz Kaiser* Google Brain lukaszkaiser@google.com