Machine Learning Basics

Announcements:

1. Warmup Quiz and P(-1) and P(0) are out

2. TA office hours are posted on Canvas (location: Rhodes 503)

3. CIS Partner Finding Social (Sep 1st, 4-6pm, Upson 142)

Objective:

Get familiar with some of the common definitions, and get a big picture of supervised / unsupervised learning

Outline for Today:

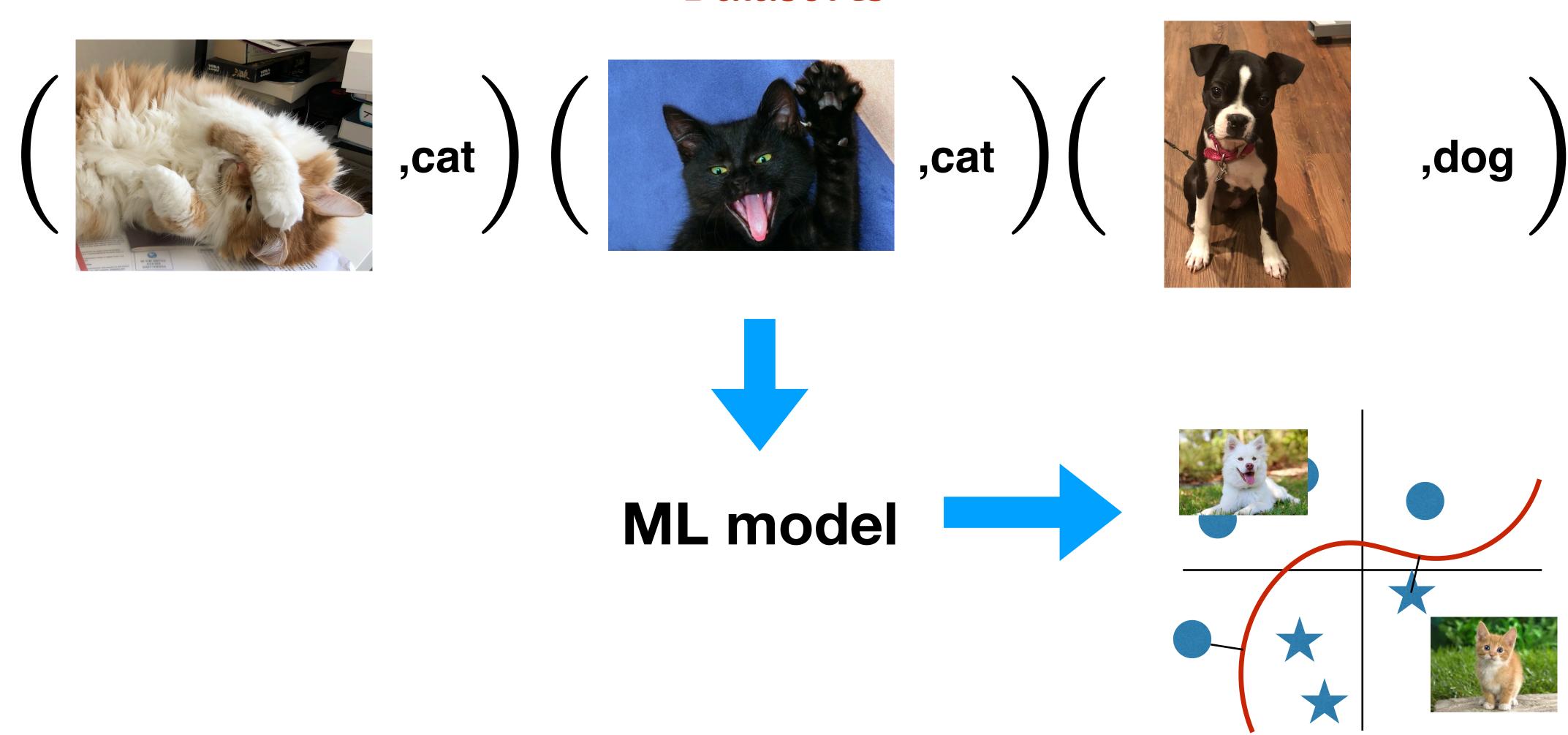
1. Supervised Learning (Classification / Regression) and Unsupervised learning

2. Generalization

3. Training / validation / testing

Classification

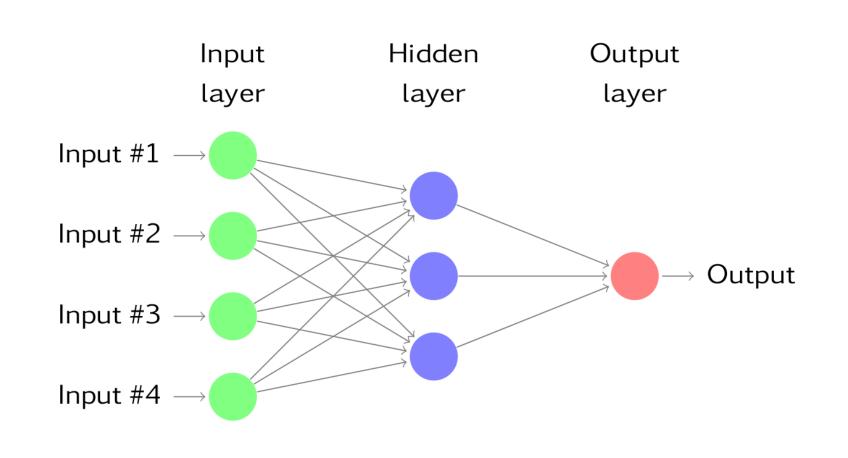
Dataset 29



Mathematical formulation of the pipeline

Dataset:

$$\mathcal{D} = \{(x_1, y_1), ..., (x_n, y_n)\}, x_i \in \mathbb{R}^d, y_i \in \mathcal{C}(\text{e.g.}, \mathcal{C} = \{-1, 1\}), (x_i, y_i) \sim \mathcal{P}(x_i, y_i) \in \mathbb{R}^d, y_i \in \mathbb{R}^d, y_i \in \mathcal{C}(\text{e.g.}, \mathcal{C} = \{-1, 1\}), (x_i, y_i) \in \mathcal{P}(x_i, y_i) \in \mathbb{R}^d, y_i \in \mathbb{R}^d, y_i \in \mathcal{C}(\text{e.g.}, \mathcal{C} = \{-1, 1\}), (x_i, y_i) \in \mathcal{P}(x_i, y_i) \in \mathbb{R}^d, y_i \in \mathbb{R}^d, y_i \in \mathcal{C}(\text{e.g.}, \mathcal{C} = \{-1, 1\}), (x_i, y_i) \in \mathcal{P}(x_i, y_i) \in \mathbb{R}^d, y_i \in \mathbb{R}^d, y_i \in \mathcal{C}(\text{e.g.}, \mathcal{C} = \{-1, 1\}), (x_i, y_i) \in \mathcal{C}(x_i, y_i) \in \mathbb{R}^d, y_i \in \mathbb{R}^d, y_i \in \mathcal{C}(x_i, y_i) \in \mathbb{R}^d, y_i \in \mathbb{R}^d, y_i \in \mathcal{C}(x_i, y_i) \in \mathbb{R}^d, y_i \in \mathbb{R}^d, y$$



Hypothesis:

 $h: \mathbb{R}^d \mapsto \mathscr{C}$

i.e., a neural network-based classifier that maps image to label of cat or dog

Hypothesis class

$$\mathcal{H} = \{h\}$$

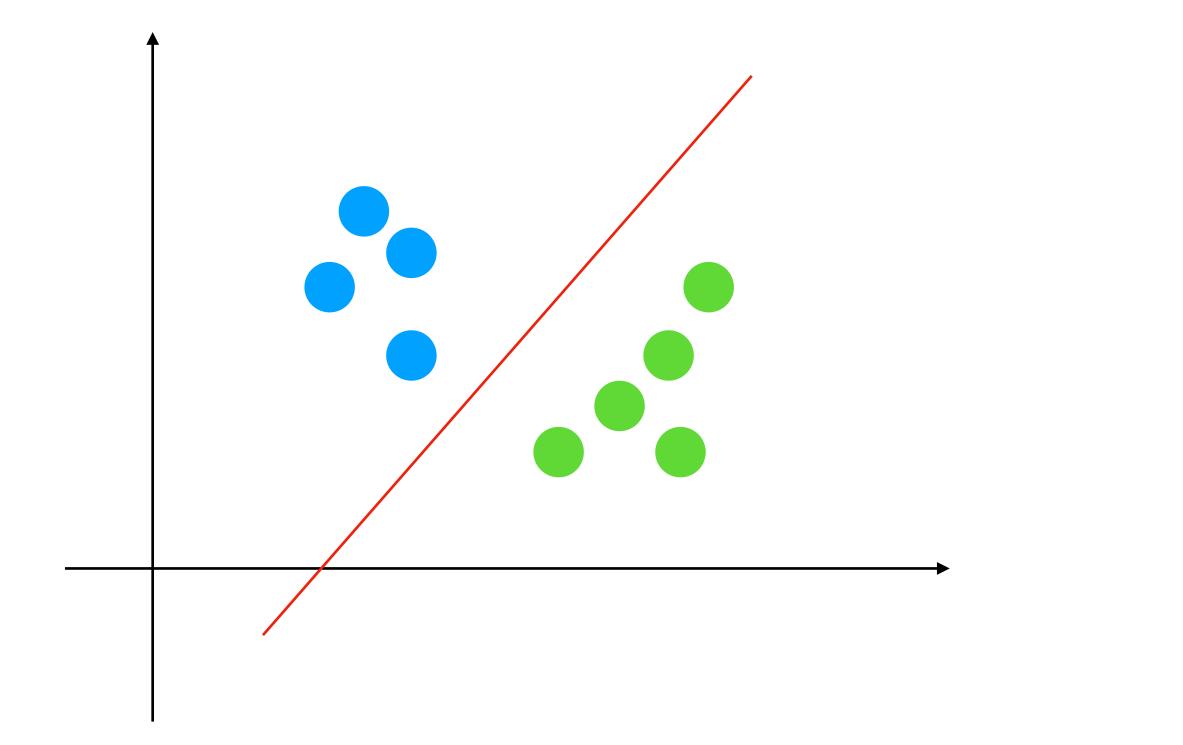
i.e., a large family of NNs with different parameters

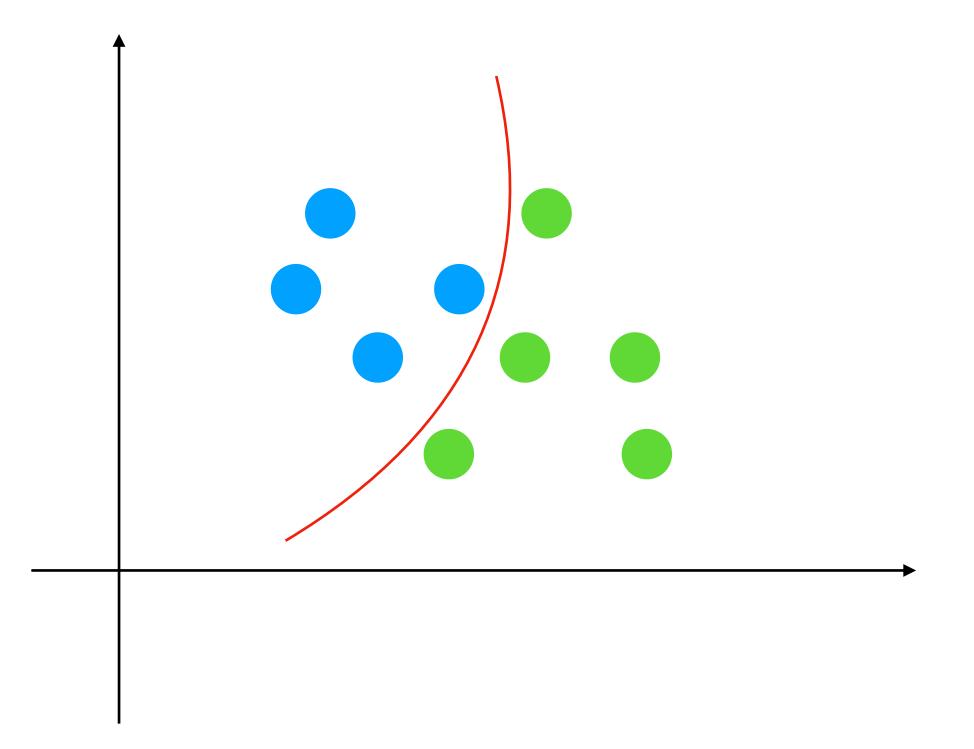
Examples of hypothesis

Inductive bias (i.e., assumptions) encoded in the hypothesis class

Ex: h is a linear function $h(x) = \text{sign}(w^{\top}x)$; \mathscr{H} contains all possible linear functions

Ex: h is nonlinear $h(x) = \text{sign}(w^{\mathsf{T}}(\text{relu}(Ax)));$ \mathscr{H} contains all possible one-layer NN

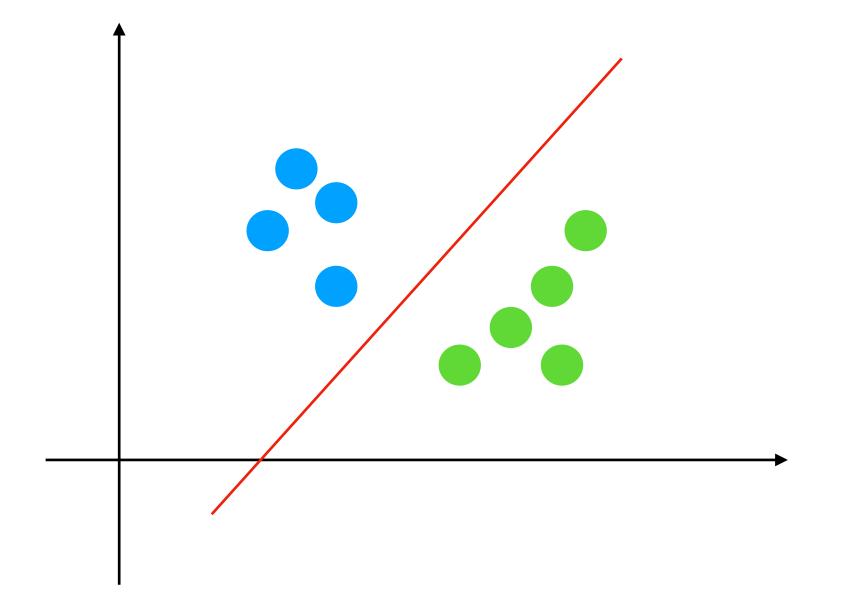




Do we need to make assumptions on the data?

No free lunch theorem says that we must make such assumptions

Informal theorem: for any machine learning algorithm \mathscr{A} , there must exist a task \mathscr{P} on which it will fail



We use prior knowledge (i.e., we believe linear function is enough) to design an ML algorithm here

The Loss Function

Q: how to select the best hypothesis \hat{h} from \mathcal{H} ?

Let's define loss function $\ell:\mathcal{H}\times\mathbb{R}^d\times\mathcal{E}\mapsto\mathbb{R}$

Intuitively, $\ell(h, x, y)$ tells us how bad (e.g., classification mistake) the hypothesis h is.

Examples:

Zero-one loss:

$$\mathcal{E}(h, x, y) = \begin{cases} 0 & h(x) = y \\ 1 & h(x) \neq y \end{cases}$$

Squared loss:

$$\mathcal{E}(h, x, y) = (h(x) - y)^2$$

Learning/Training

Q: how to select the best hypothesis \hat{h} from \mathcal{H} ?

With loss ℓ being defined, we can perform training/learning:

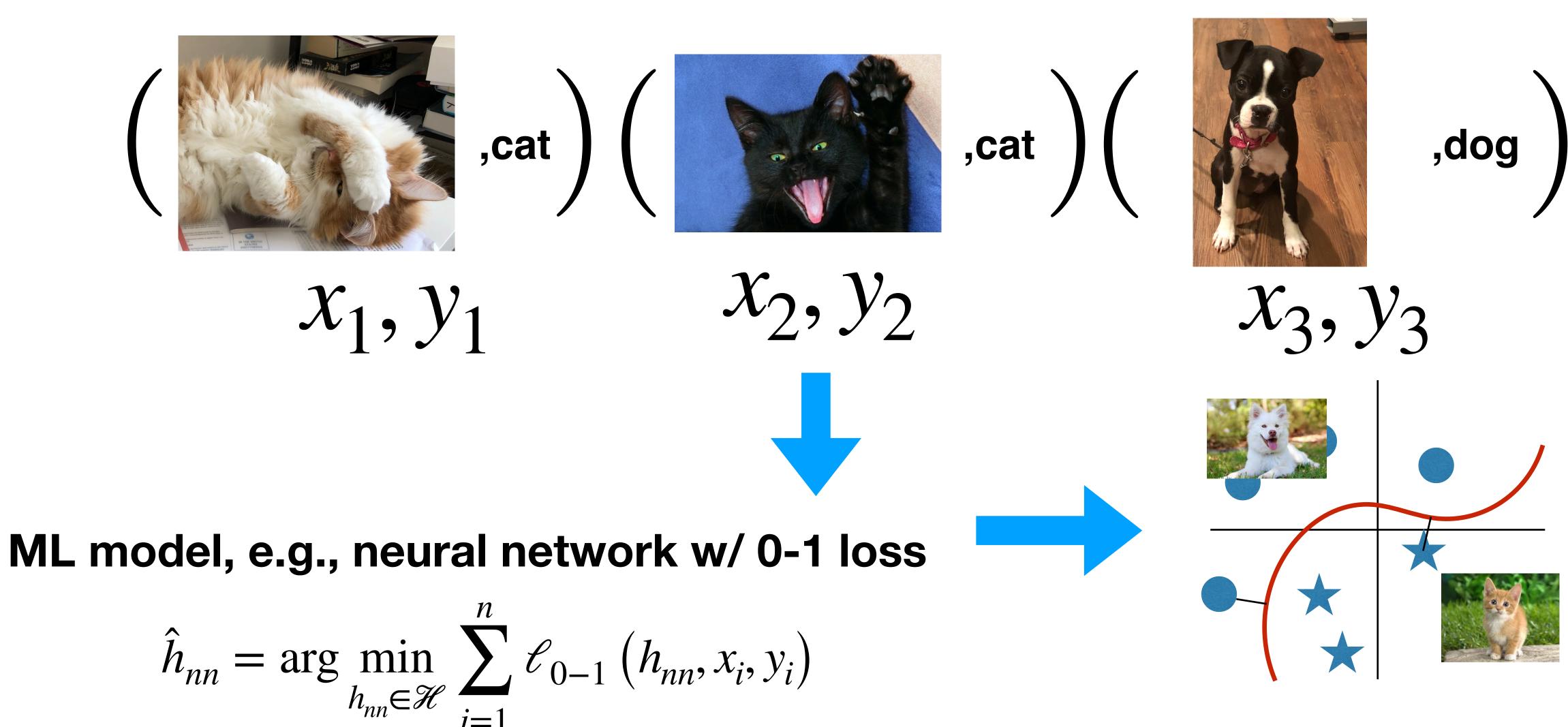
$$\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} \ell(h, x_i, y_i)$$

The hypothesis that has smallest training error

e.g., total number of mistakes h makes on n training samples (training error)

Putting things together: Binary classification

Dataset 29



Regression

Example: learning to drive from expert

Feature *x*

Expert steering angle y

$$\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$$

collected by human expert

Continuous variable $(-\pi, \pi)$

Loss function: square loss

$$\mathcal{E}(h, x, y) = (h(x) - y)^2$$

Hypothesis class: linear functions

$$h(x) := \theta^{\mathsf{T}} x$$
, where $\theta \in \mathbb{R}^d$

Training: minimizing mean squared error (MSE)

$$\underset{\theta}{\operatorname{arg \, min}} \sum_{i} (\theta^{\mathsf{T}} x_i - y_i)^2$$

Application of Regression: training self-driving cars [Pomerleau, NeurIPS '88]

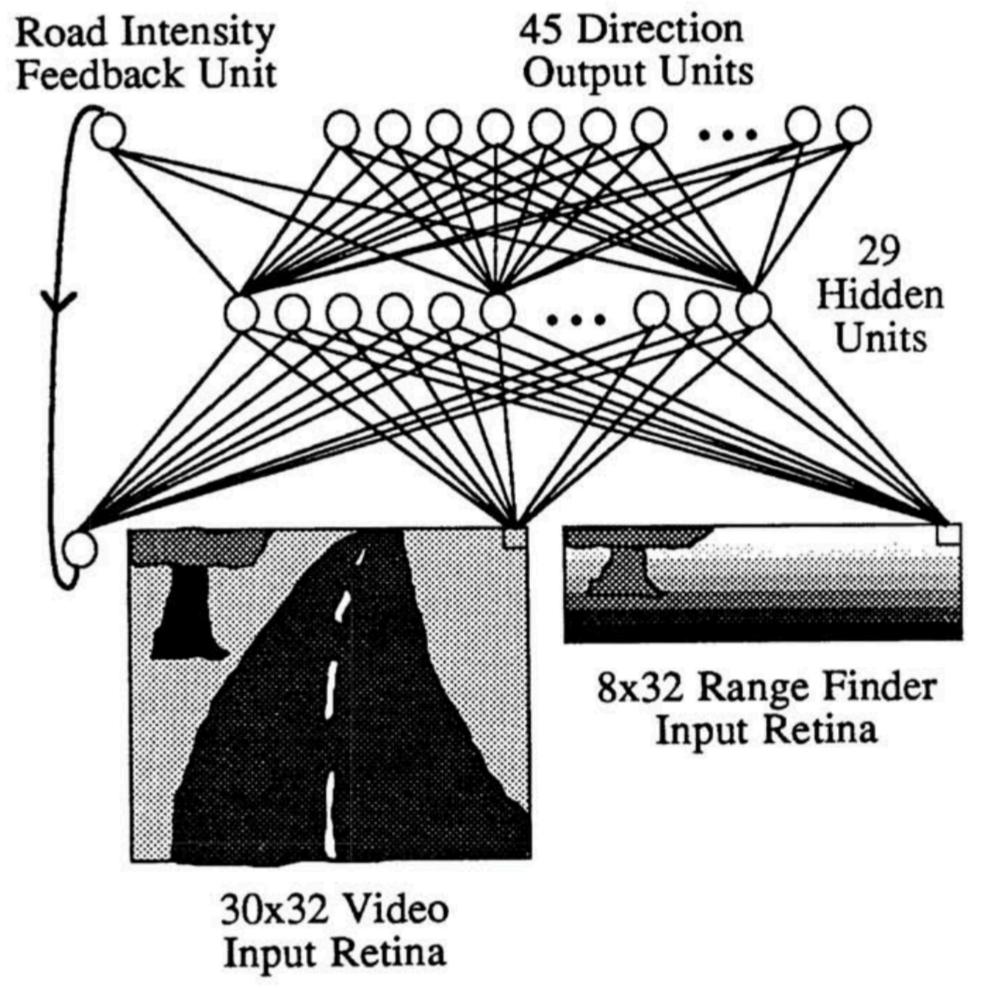


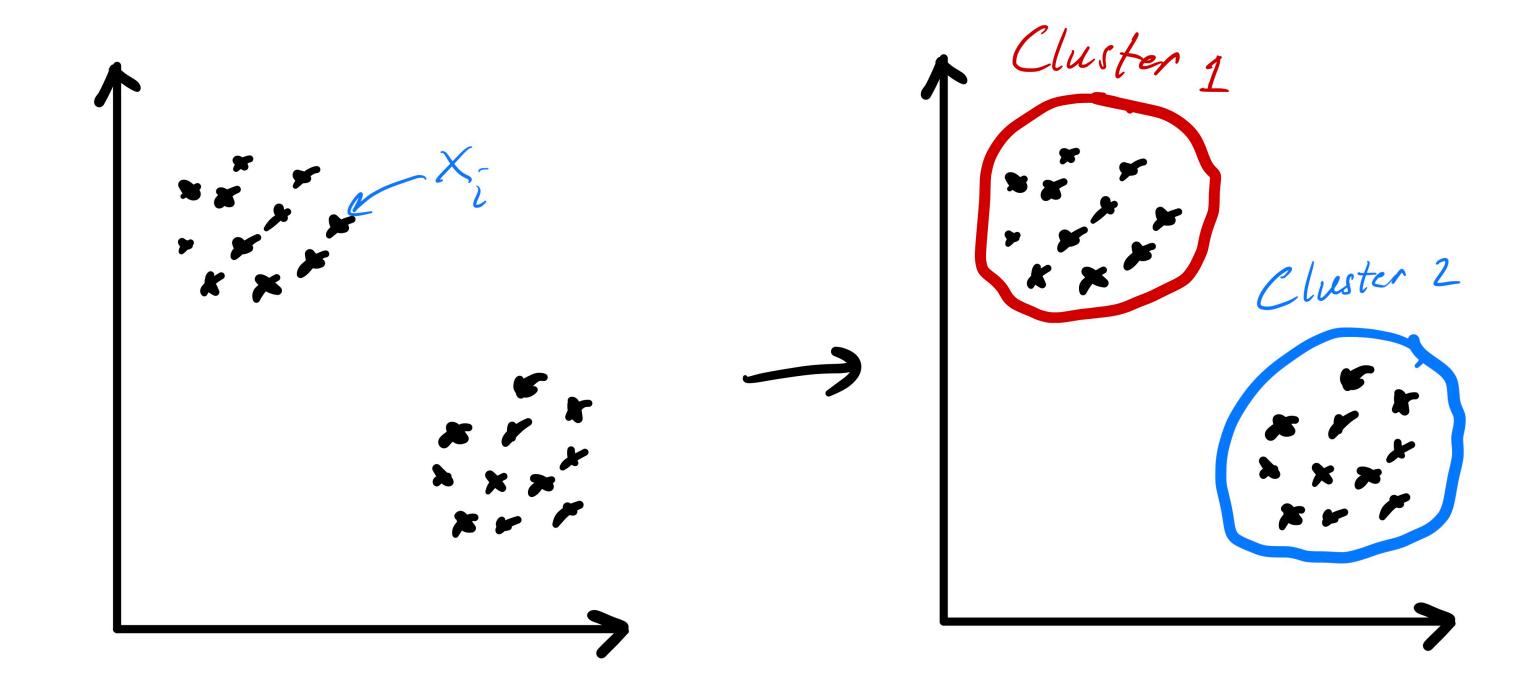
Figure 1: ALVINN Architecture

Unsupervised Learning

Dataset:

$$\mathcal{D} = \{(x_1), ..., (x_n)\}, x_i \in \mathbb{R}^d, x_i \sim \mathcal{P}$$

Example: Clustering

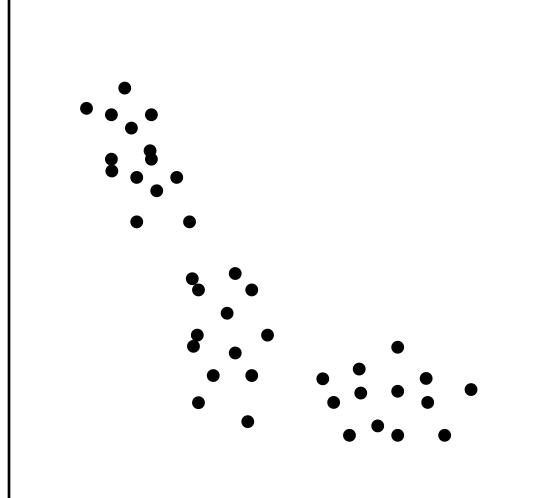


Unsupervised Learning

Dataset:

$$\mathcal{D} = \{(x_1), ..., (x_n)\}, x_i \in \mathbb{R}^d, x_i \sim \mathcal{P}$$

Example: distribution estimation



Can we construct a distribution $\hat{\mathcal{P}}$ to approximate $\hat{\mathcal{P}}$?

Anomaly detection / generative Al

Application of distribution estimation: face generator

Generated images:

Similar images from the dataset

Outline for Today:

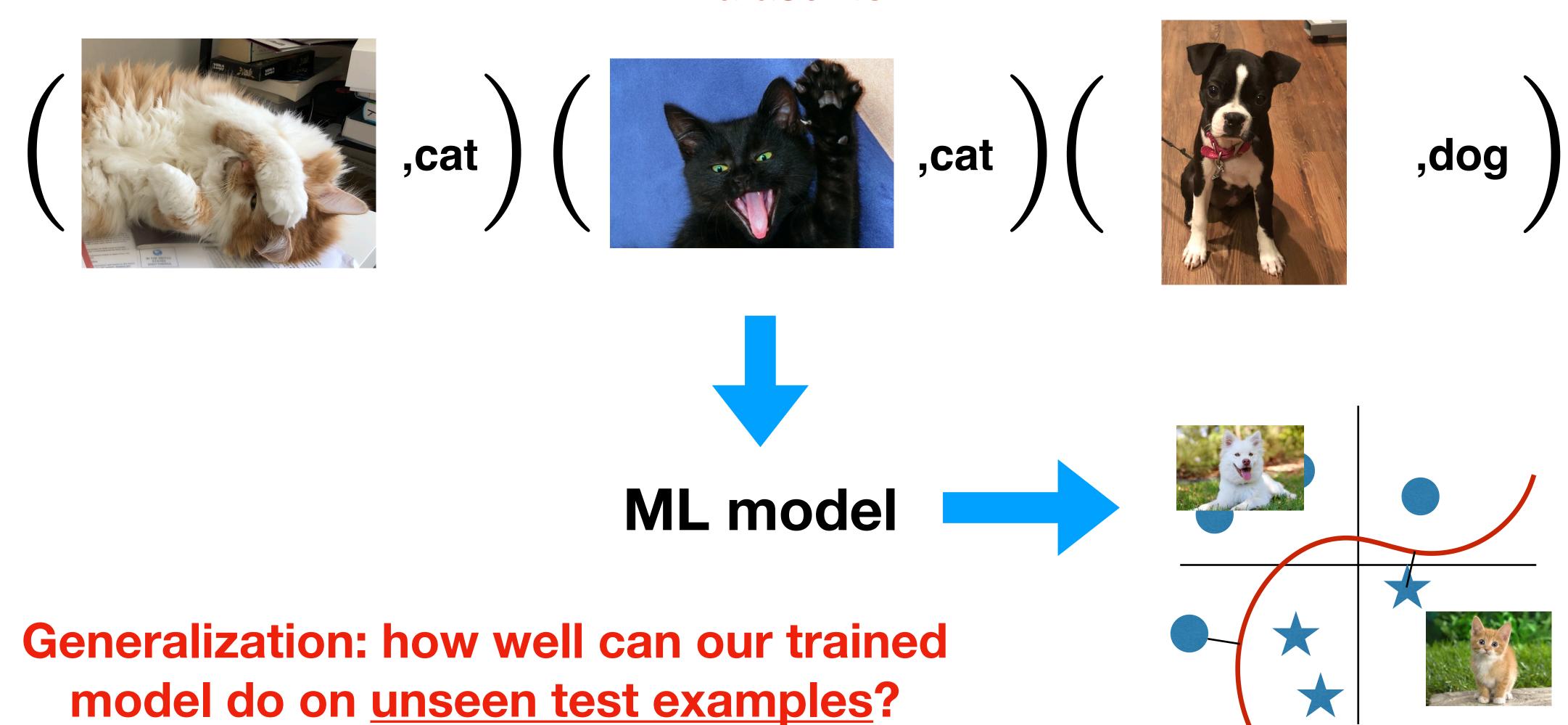
1. Supervised Learning (Classification / Regression) and Unsupervised learning

2. Generalization

3. Training / validation / testing

Generalization

Dataset 29



Let's formalize this using distribution

The Independent and identically distributed (i.i.d) assumption:

Training data \mathscr{D} is i.i.d sampled from a distribution \mathscr{P} , i.e., $x_i, y_i \sim \mathscr{P}$, $\forall i \in [n]$ (i.e., all pairs are sampled from \mathscr{P} , and (x_i, y_i) is independent of others)

We further assume test data is also from \mathscr{P} , i.e., $(x, y) \sim \mathscr{P}$

Generalization error:
$$\mathbb{E}_{x,y\sim \mathscr{T}}\left[\mathcal{C}(\hat{h},x,y)\right]$$

e.g., expected classification error of \hat{h}

Overfitting

Overfitting: we have a small training error but large generalization error

Example

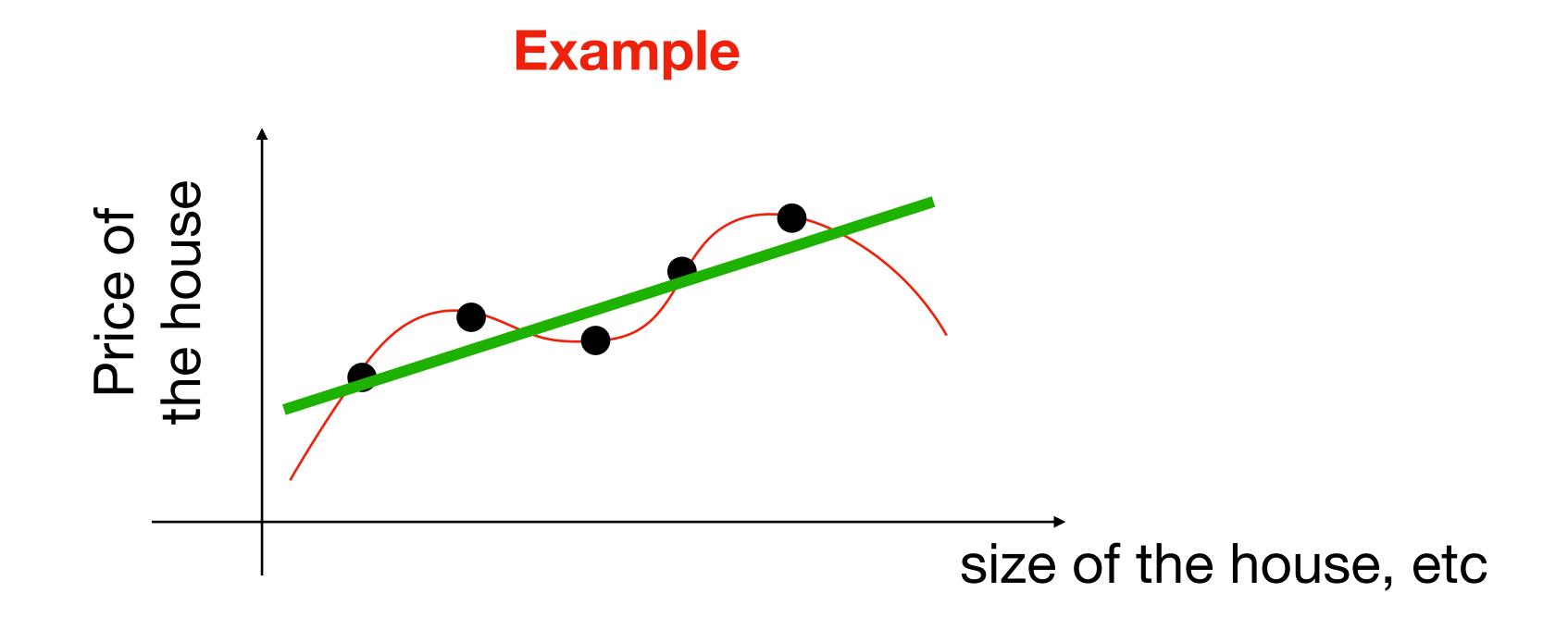
Hypothesis \tilde{h} that **memorizes** the whole training set

$$\tilde{h}(x) = \begin{cases} y_i & \exists (x_i, y_i) \in \mathcal{D} \text{ w/ } x_i = x \\ -1 & \text{else} \end{cases}$$

What is the training error? Is this a good classifier?

Overfitting

Overfitting: we have a small training error but large generalization/test error



Training error = 0 (e.g., we probably overfit to noises), but could do terribly on test examples

Overfitting

How to tell that our models overfit?

Outline for Today:

1. Supervised Learning (Classification / Regression) and Unsupervised learning

2. Generalization

3. Training / validation / testing

Training, validation, and testing

Given a training dataset \mathcal{D} , we can split it into three sets:

 \mathcal{D}_{TR} : training set

 \mathcal{D}_{VA} : validation set

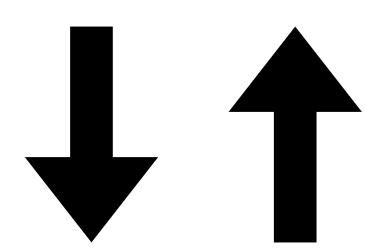
 \mathcal{D}_{TE} : test set

Before training/learning, we often randomly split it with size proportional to 80% / 10% / 10%

Selecting models using validation set

We can use validation set to select models, i.e., select hypothesis class, tune parameters, etc

Small avg error on \mathscr{D}_{TR} but larger avg error on $\mathscr{D}_{V\!A}$ indicates overfitting



Revise model on \mathcal{D}_{TR} (e.g., add regularization, change neural network structures, etc.)

Do not use test set to train/select models

We should not touch test set during training!

This makes sure that the test set $\mathscr{D}_{\mathit{TE}}$ is independent of our model \hat{h}

Such independence implies that:

$$\frac{1}{|\mathcal{D}_{TE}|} \sum_{x,y \in \mathcal{D}_{TE}} \ell(\hat{h}, x, y) \approx \mathbb{E}_{x,y \sim \mathcal{P}} [\ell(\hat{h}, x, y)]$$

(Due to law of large numbers)

Other ways to split the data?

Can we split data based on features, or labels?

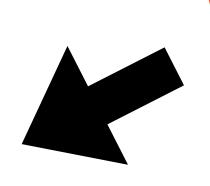
Summary

1. Given a task and a dataset

$$\mathcal{D} = \{x_i, y_i\}, x_i, y_i \sim \mathcal{P}$$

2. Design hypothesis class \mathcal{H} and loss function ℓ (encodes inductive bias)

4. Output: \hat{h} that has small generalization error $\mathbb{E}_{x,y\sim\mathcal{P}}[\ell(\hat{h},x,y)]$



3. Train: $\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{(x,y \in \mathcal{D})} \ell(h,x,y)$

Often repeated many times using validation \mathcal{D}_{VA}