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Announcements

1. HW2 (Perceptron, PCA, K-means) will be out today



Recap on Perceptron

Binary classifier: sign(w ' x)

The Perceptron Alg: Q: how to apply this on a static
Initialize w, = 0 dataset & = {x;, y;}'_,?

Fort=0 — o

Q: If data has margin y(x; w>) >,

feature x, shows up *0

does It guarantee to converge to w
We make a prediction $, = sign(w,' x,)

Check if y, equal to y,
We update w,,.; = w, + 1(y, # y,)yx,




Objective for today:

Understand the two common statistical learning framework: MLE and MAP



Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a posteriori probability (MAP)



Ex 1: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

QZ — {yl- ?=1’ yl- & {— 1,1 } (V; = I means head in i’s trial, -1 means tail)

Q: assume y; ~ Bernoulli(6™), how to estimate 6™ given 2?

Z?zl l(yl — 1)

n

0 =

Let’s make this rigorous!



Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:

D = {yl-}?zl, V; € {— 1,1 } (y; = 1 means head in i’s trial, -1 means tail)

If the probability of getting head is 8 € [0,1], what is the
probability of observing the data & (i.e., likelihood)?

P(D6) = 61(1 — B)" ™

MLE Principle: Find @ that maximizes the likelihood of the data:

0, . =arg max P(D |0)
0e[0,1]




Maximum Likelihood Estimation

We toss a coin n times (independently), we observe the following outcomes:

QZ — {yl- ?=1’ yl- & {— 1,1 } (V; = I means head in i’s trial, -1 means tail)

MLE Principle: Find @ that maximizes the likelihood of the data:

0,0 = arg max P(P|0) = arg max 0" (1 — O)"™"

0[0,1] 0e[0,1]
= arg max In(@"1(1 — )" ™)
0<c(0,1]

n
= arg max n,In(0) + (n — n)In(l —0) = —
0<[0,1] n



Ex 2: Estimate the mean
T {.X }n 19 E Rd

Assume data is from A (4™, I), want to estimate u™ from the data 9

Let’s apply the MLE Principle:

n

Step 1: P(sz)zn

=
exp
=1V (Q2m)!

Step 2: apply log and maximize the log-likelihood:

1
_E(Xi — ﬂ)T(xi — /4))

n n

arg max 2 — (=) G —p) =4, = Z x./n
Pzl =1



Q: Estimate the mean and variance

Assume data is from A/ (u*, ), want to estimate

o—O0 000000 0 ¢ o—

u™, o from the data &

Let’s apply the MLE Principle:

n

1 1
Step 1: P(D | u,0) = H > eXp (—E(Xi — /4)2/62)
T

i=1 O

Step 2: apply log and maximize the log-likelihood:

argmaXZ(—(x — u)*lo* —In(0)) — 7

u,0>0



Some properties of MLE

1. MLE is consistent: if our model assumption is correct (e.g., coin flip follows some Bernoulli
distribution), then 6 ,, — 0*, asn —

2. When our model assumption is wrong (e.g., we use Gaussian to model
data which is from some more complicated distribution), then MLE loses
such guarantee



Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a Posteriori Probability (MAP)



Ex: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

D = {yl-};f‘zl, V; € {— 1,1 } (y; = 1 means head in i’s trial, -1 means tail)

PDF of Beta (Bell-shape)

4.0

A Bayesian Statistician will treat the optimal
parameter @ being a random variable:

6* ~ P(6)

Example: P(6) being a Beta distribution:

PO =601 -0y-1/z,

Beta(2,8) Beta(8,2)
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Probability Density
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o
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where Z = J 0°~1(1 — 6y~d,
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The Posterior distribution over &

Now, we have a prior P(8), and we have a
dataset Y = {y;}_,, define posterior

distribution: prior PO 9)
— likelihood
P(e ‘ @) 3 posterior
Using Bayes rule, we get: N P06
PO|Y) = POP(D|0)/P(D)
Posterior &< Prior X Likelihood L&10)
0 0.2 0.4 0.6 0.8 1



Maximum A Posteriori Probability estimation (MAP)
PO D) x P(O)P(D | 0)

A\

0, . = arg max P(0|Y) = arg max P(O)P(Z |0)
0<[0,1] 0<(0,1]

P(O|9)

= arg max InP(@) +InP(|0) = — ticlood
0e|0,1]




MAP for coin flip

A\

O napy = arg max In(P(0)P(Z|0))
0e[0,1]
Step 1: specify Prior P(0) 6’“‘1(1 — 9)5—1
Step 2: data likelihood P(2 |0) = 0"(1 — 6)"™™

Step 3: Compute posterior P(0| D) «x @1~ 1(1 — gyr—mt/-1

Step 4: C te MAP @ mta— |
ep 4: Compute map = —————
n+a+p—2

(a — 1,/ — 1) can be understood as some fictions flips: we had o — 1
hallucinated heads, and f/ — 1 hallucinated tails



Some considerations on prior distributions

. . A Ifll + CZ - 1 nl . A
1. In coin flip example, when n — ©0, Hmap — m — 7('-9-,‘9mle)

2. When n is small and our prior is accurate, MAP can work better than MLE

3. In general, not so easy to set up a good prior....



Summary

prior
likelihood

posterior

P(0)

0.2 0.4

PO 2)
P(22|0)
.
0.6 0.8 1



Summary for today

1 MLE (frequentist perspective):

The ground truth 8™ is unknown but fixed; we search for the parameter that makes
the data as likely as possible

arg max P(& | 0)
0

2 MAP (Bayesian perspective):

The ground truth @* treated as a random variable, i.e., 0% ~ P(6); we search for
the parameter that maximizes the posterior

arg max P(0| <) = argmax P(0)P(2 | 6)
0 0



