Maximum Likelihood Estimation 8 **Maximum A Posteriori Probability** Estimation

Announcements

1. HW2 (Perceptron, PCA, K-means) will be out today

Recap on Perceptron

The Perceptron Alg: Initialize $w_0 = 0$ For $t = 0 \rightarrow \infty$ feature x_t shows up We make a prediction $\hat{y}_t = \text{sign}(w_t^{\top} x_t)$ Check if \hat{y}_t equal to y_t We update $w_{t+1} = w_t + \mathbf{1}(\hat{y}_t \neq y_t)y_tx_t$

Binary classifier: $sign(w^{T}x)$

Q: how to apply this on a static dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^{n}$?

Q: If data has margin $y_i(x_i^{\top}w^{\star}) \geq \gamma$, does it guarantee to converge to w^* ?

Objective for today:

Understand the two common statistical learning framework: MLE and MAP

Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a posteriori probability (MAP)

Ex 1: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1, 1\}$$

 $\hat{A} = \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}$

Let's make this rigorous!

 $(y_i = 1 \text{ means head in } i$'s trial, -1 means tail)

Q: assume $y_i \sim \text{Bernoulli}(\theta^*)$, how to estimate θ^* given \mathcal{D} ?

$$\sum_{i=1}^{n} \mathbf{1}(y_i = 1)$$

Maximum Likelihood Estimation

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1, 1\}$$

MLE Principle: Find θ that **maximizes the likelihood** of the data:

- We toss a coin n times (independently), we observe the following outcomes:
 - $(y_i = 1 \text{ means head in } i$'s trial, -1 means tail)
 - If the probability of getting head is $\theta \in [0,1]$, what is the probability of observing the data \mathcal{D} (i.e., likelihood)?
 - $P(\mathcal{D} \mid \theta) = \theta^{n_1}(1 \theta)^{n n_1}$

 $\hat{\theta}_{mle} = \arg \max_{\theta \in [0,1]} P(\mathcal{D} \mid \theta)$

Maximum Likelihood Estimation

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1, 1\}$$

- $\hat{\theta}_{mle} = \arg \max_{\theta \in [0,1]} P(\mathcal{D} \mid \theta) = \arg \max_{\theta \in [0,1]} \theta^{n_1} (1 \theta)^{n n_1}$
 - $= \arg \max \ln(\theta^{n_1}(1-\theta)^{n-n_1})$ $\theta \in [0.1]$

 $= \arg \max n_1 \ln(\theta) + (n - n_1) \ln(1 - \theta) = \theta \in [0,1]$

- We toss a coin n times (independently), we observe the following outcomes:
 - $(y_i = 1 \text{ means head in } i$'s trial, -1 means tail)
 - <u>MLE Principle</u>: Find θ that maximizes the likelihood of the data:

N

Ex 2: Estimate the mean

μ

$$\mathcal{D} = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}^d$$

Assume data is from $\mathcal{N}(\mu^{\star}, I)$, want to estimate μ^{\star} from the data \mathscr{D}

Let's apply the MLE Principle:

$$\mathbf{P}(\mathcal{D} \mid \mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{(2\pi)^d}} \exp\left(-\frac{1}{2}(x_i - \mu)^{\mathsf{T}}(x_i - \mu)\right)$$

Step 2: apply log and maximize the log-likelihood:

$$\arg\max_{\mu} \sum_{i=1}^{n} - (x_i - \mu)^{\mathsf{T}} (x_i - \mu) \Rightarrow \hat{\mu}_{mle} = \sum_{i=1}^{n} \frac{x_i}{n}$$

Q: Estimate the mean and variance

- Step 1: P
- - $\underset{\mu,\sigma>0}{\text{arg max}}$

$$\mathcal{D} = \{x_i\}_{i=1}^n, x_i \in \mathbb{R}$$

Assume data is from $\mathcal{N}(\mu^{\star}, \sigma^2)$, want to estimate μ^{\star}, σ from the data \mathscr{D}

Let's apply the MLE Principle:

$$P(\mathcal{D} \mid \mu, \sigma) = \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(x_i - \mu)^2/\sigma^2\right)$$

Step 2: apply log and maximize the log-likelihood:

$$\sum_{i=1}^{n} (-(x_i - \mu)^2 / \sigma^2 - \ln(\sigma)) = ??$$

Some properties of MLE

2. When our model assumption is wrong (e.g., we use Gaussian to model data which is from some more complicated distribution), then MLE loses such guarantee

1. MLE is consistent: if our model assumption is correct (e.g., coin flip follows some Bernoulli distribution), then $\hat{\theta}_{mle} \to \theta^{\star}$, as $n \to \infty$

Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a Posteriori Probability (MAP)

Ex: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

$$\mathcal{D} = \{y_i\}_{i=1}^n, y_i \in \{-1, 1\}$$

A Bayesian Statistician will treat the optimal parameter θ^{\star} being a random variable:

$$\theta^{\star} \sim P(\theta)$$

Example: $P(\theta)$ being a Beta distribution:

$$P(\theta) = \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} / Z,$$

where $Z = \int_{\theta \in [0, 1]} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d_{\theta}$

($y_i = 1$ means head in *i*'s trial, -1 means tail)

The Posterior distribution over θ

Now, we have a prior $P(\theta)$, and we have a dataset $\mathcal{D} = \{y_i\}_{i=1}^n$, define posterior distribution: $P(\theta \mid \mathscr{D})$

Using Bayes rule, we get: $P(\theta \mid \mathcal{D}) = P(\theta)P(\mathcal{D} \mid \theta)/P(\mathcal{D})$ $\propto P(\theta)P(\mathcal{D} \mid \theta)$

Posterior \propto Prior \times Likelihood

Maximum A Posteriori Probability estimation (MAP) $P(\theta \mid \mathcal{D}) \propto P(\theta) P(\mathcal{D} \mid \theta)$

$\hat{\theta}_{map} = \arg \max_{\theta \in [0,1]} P(\theta \mid \mathscr{D}) = \arg \max_{\theta \in [0,1]} P(\theta) P(\mathscr{D} \mid \theta)$

$= \arg \max_{\theta \in [0,1]} \ln P(\theta) + \ln P(\mathcal{D} \mid \theta) \quad {}^{3}$ $\theta \in [0,1]$

MAP for coin flip

$$\hat{\theta}_{map} = \arg \mathop{\mathrm{mg}}_{\theta \in \Theta} \mathbb{I}_{\theta \in \Theta}$$

Step 1: specify Prior $P(\theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta}$ Step 2: data likelihood $P(\mathcal{D} \mid \theta) = \theta^{n_1}(1 - \theta)^{n - n_1}$ Step 3: Compute posterior $P(\theta \mid \mathscr{D}) \propto \theta^{n_1 + \alpha - 1} (1 - \theta)^{n - n_1 + \beta - 1}$ Step 4: Compute MAP $\hat{\theta}_{map} = \frac{n_1 + \alpha - 1}{n + \alpha + \beta - 2}$

nax $\ln(P(\theta)P(\mathcal{D} \mid \theta))$ [0,1]

- $(\alpha 1, \beta 1)$ can be understood as some fictions flips: we had $\alpha 1$ hallucinated heads, and $\beta - 1$ hallucinated tails

Some considerations on prior distributions

1. In coin flip example, when $n \to \infty$

2. When *n* is small and our prior is accurate, MAP can work better than MLE

3. In general, not so easy to set up a good prior....

$$\hat{\theta}_{map} = \frac{n_1 + \alpha - 1}{n + \alpha + \beta - 2} \rightarrow \frac{n_1}{n} (\text{i.e.}, \hat{\theta}_{mle})$$

Summary for today

- 1 MLE (frequentist perspective):
- The ground truth θ^{\star} is unknown but fixed; we search for the parameter that makes the data as likely as possible
 - $\underset{\theta}{\operatorname{arg\,max}} P(\mathcal{D} \mid \theta)$
 - 2 MAP (Bayesian perspective):
 - The ground truth θ^{\star} treated as a random variable, i.e., $\theta^{\star} \sim P(\theta)$; we search for the parameter that maximizes the posterior
 - $\arg \max_{\theta} P(\theta \,|\, \mathcal{D}) = \arg \max_{\theta} P(\theta) P(\mathcal{D} \,|\, \theta)$