
Maximum Likelihood Estimation 
&  

Maximum A Posteriori Probability 
Estimation



Announcements

1. HW2 (Perceptron, PCA, K-means) will be out today



Recap on Perceptron
Binary classifier: sign(w⊤x)

The Perceptron Alg:
Initialize  w0 = 0
For t = 0 → ∞

feature  shows upxt

We make a prediction ̂yt = sign(w⊤
t xt)

Check if  equal to ̂yt yt

We update wt+1 = wt + 1( ̂yt ≠ yt)ytxt

Q: how to apply this on a static 
dataset ?𝒟 = {xi, yi}n

i=1

Q: If data has margin , 
does it guarantee to converge to ?

yi(x⊤
i w⋆) ≥ γ

w⋆



Objective for today:

Understand the two common statistical learning framework: MLE and MAP



Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a posteriori probability (MAP) 



Ex 1: Estimating the probability of a coin flip

We toss a coin n times (independently), we observe the following outcomes:

𝒟 = {yi}n
i=1, yi ∈ {−1,1} (  means head in ’s trial, -1 means tail)yi = 1 i

Q: assume , how to estimate  given ? yi ∼ Bernoulli(θ⋆) θ⋆ 𝒟

̂θ =
∑n

i=1 1(yi = 1)

n
Let’s make this rigorous!



Maximum Likelihood Estimation

If the probability of getting head is , what is the 
probability of observing the data  (i.e., likelihood)? 

θ ∈ [0,1]
𝒟

P(𝒟 |θ) = θn1(1 − θ)n−n1

MLE Principle: Find  that maximizes the likelihood of the data: θ

̂θmle = arg max
θ∈[0,1]

P(𝒟 |θ)

We toss a coin n times (independently), we observe the following outcomes:

𝒟 = {yi}n
i=1, yi ∈ {−1,1} (  means head in ’s trial, -1 means tail)yi = 1 i



Maximum Likelihood Estimation

MLE Principle: Find  that maximizes the likelihood of the data: θ

̂θmle = arg max
θ∈[0,1]

P(𝒟 |θ) = arg max
θ∈[0,1]

θn1(1 − θ)n−n1

= arg max
θ∈[0,1]

ln(θn1(1 − θ)n−n1)

= arg max
θ∈[0,1]

n1 ln(θ) + (n − n1)ln(1 − θ) =
n1

n

We toss a coin n times (independently), we observe the following outcomes:

𝒟 = {yi}n
i=1, yi ∈ {−1,1} (  means head in ’s trial, -1 means tail)yi = 1 i



Ex 2: Estimate the mean

𝒟 = {xi}n
i=1, xi ∈ ℝd

Assume data is from , want to estimate  from the data 𝒩(μ⋆, I) μ⋆ 𝒟

Let’s apply the MLE Principle:

P(𝒟 |μ) =
n

∏
i=1

1

(2π)d
exp (−

1
2

(xi − μ)⊤(xi − μ))Step 1: 

Step 2:   apply log and maximize the log-likelihood:

arg max
μ

n

∑
i=1

− (xi − μ)⊤(xi − μ) ⇒ ̂μmle =
n

∑
i=1

xi/n



Q: Estimate the mean and variance

𝒟 = {xi}n
i=1, xi ∈ ℝ

Let’s apply the MLE Principle:

P(𝒟 |μ, σ) =
n

∏
i=1

1

σ 2π
exp (−

1
2

(xi − μ)2/σ2)Step 1: 

Step 2:   apply log and maximize the log-likelihood:

arg max
μ,σ>0

n

∑
i=1

( − (xi − μ)2/σ2 − ln(σ)) = ??

Assume data is from , want to estimate 
 from the data 

𝒩(μ⋆, σ2)
μ⋆, σ 𝒟



Some properties of MLE

1. MLE is consistent: if our model assumption is correct (e.g., coin flip follows some Bernoulli 
distribution), then ̂θmle → θ⋆,  as n → ∞

2. When our model assumption is wrong (e.g., we use Gaussian to model 
data which is from some more complicated distribution), then MLE loses 

such guarantee



Outline for today:

1. Maximum Likelihood estimation (MLE)

2. Maximum a Posteriori Probability (MAP) 



Ex: Estimating the probability of a coin flip
We toss a coin n times (independently), we observe the following outcomes:

𝒟 = {yi}n
i=1, yi ∈ {−1,1} (  means head in ’s trial, -1 means tail)yi = 1 i

A Bayesian Statistician will treat the optimal 
parameter  being a random variable:θ⋆

θ⋆ ∼ P(θ)
Example:  being a Beta distribution:P(θ)

P(θ) = θα−1(1 − θ)β−1/Z,

 where Z = ∫θ∈[0,1]
θα−1(1 − θ)β−1dθ

θ



The Posterior distribution over  θ
Now, we have a prior , and we have a 

dataset , define posterior 
distribution:


P(θ)
𝒟 = {yi}n

i=1

P(θ |𝒟)

Using Bayes rule, we get: 

P(θ |𝒟) = P(θ)P(𝒟 |θ)/P(𝒟)

∝ P(θ)P(𝒟 |θ)

Posterior  Prior  Likelihood∝ ×

P(θ)

P(𝒟 |θ)

P(θ |𝒟)



Maximum A Posteriori Probability estimation (MAP)
P(θ |𝒟) ∝ P(θ)P(𝒟 |θ)

̂θmap = arg max
θ∈[0,1]

P(θ |𝒟) = arg max
θ∈[0,1]

P(θ)P(𝒟 |θ)

= arg max
θ∈[0,1]

ln P(θ) + ln P(𝒟 |θ)
P(θ |𝒟)



MAP for coin flip

̂θmap = arg max
θ∈[0,1]

ln(P(θ)P(𝒟 |θ))

Step 1: specify Prior P(θ) ∝ θα−1(1 − θ)β−1

Step 2: data likelihood P(𝒟 |θ) = θn1(1 − θ)n−n1

Step 3: Compute posterior P(θ |𝒟) ∝ θn1+α−1(1 − θ)n−n1+β−1

Step 4: Compute MAP ̂θmap =
n1 + α − 1

n + α + β − 2

( ) can be understood as some fictions flips: we had  
hallucinated heads, and  hallucinated tails

α − 1,β − 1 α − 1
β − 1



Some considerations on prior distributions

1. In coin flip example, when n → ∞, ̂θmap =
n1 + α − 1

n + α + β − 2
→

n1

n
(i.e., ̂θmle)

2. When  is small and our prior is accurate, MAP can work better than MLEn

3. In general, not so easy to set up a good prior….



Summary

P(θ)

P(𝒟 |θ)

P(θ |𝒟)



Summary for today

1 MLE (frequentist perspective): 

The ground truth  is unknown but fixed; we search for the parameter that makes 
the data as likely as possible

θ⋆

arg max
θ

P(𝒟 |θ)

2 MAP (Bayesian perspective): 

The ground truth  treated as a random variable, i.e., ; we search for 
the parameter that maximizes the posterior 

θ⋆ θ⋆ ∼ P(θ)

arg max
θ

P(θ |𝒟) = arg max
θ

P(θ)P(𝒟 |θ)


