K-nearest Neighbor

Announcements:

1. HW1 will be out today / early tomorrow and Due Sep 12

2. P1 will be out later this week

Recap on ML basics

T/F: A hypothesis that achieves zero training error is always good

T/F: zero-one loss is a good loss function for regression

T/F: We can use validation dataset to check if our model overfits

Objective

Understand KNN — our first ML algorithm that can do both regression and classification

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., when it can fail)

The K-NN Algorithm

Input: classification training dataset $\{x_i, y_i\}_{i=1}^n$, and parameter $K \in \mathbb{N}^+$, and a distance metric d(x, x') (e.g., $||x - x'||_2$ euclidean distance)

K-NN Algorithm:

Store all training data

For any test point x:

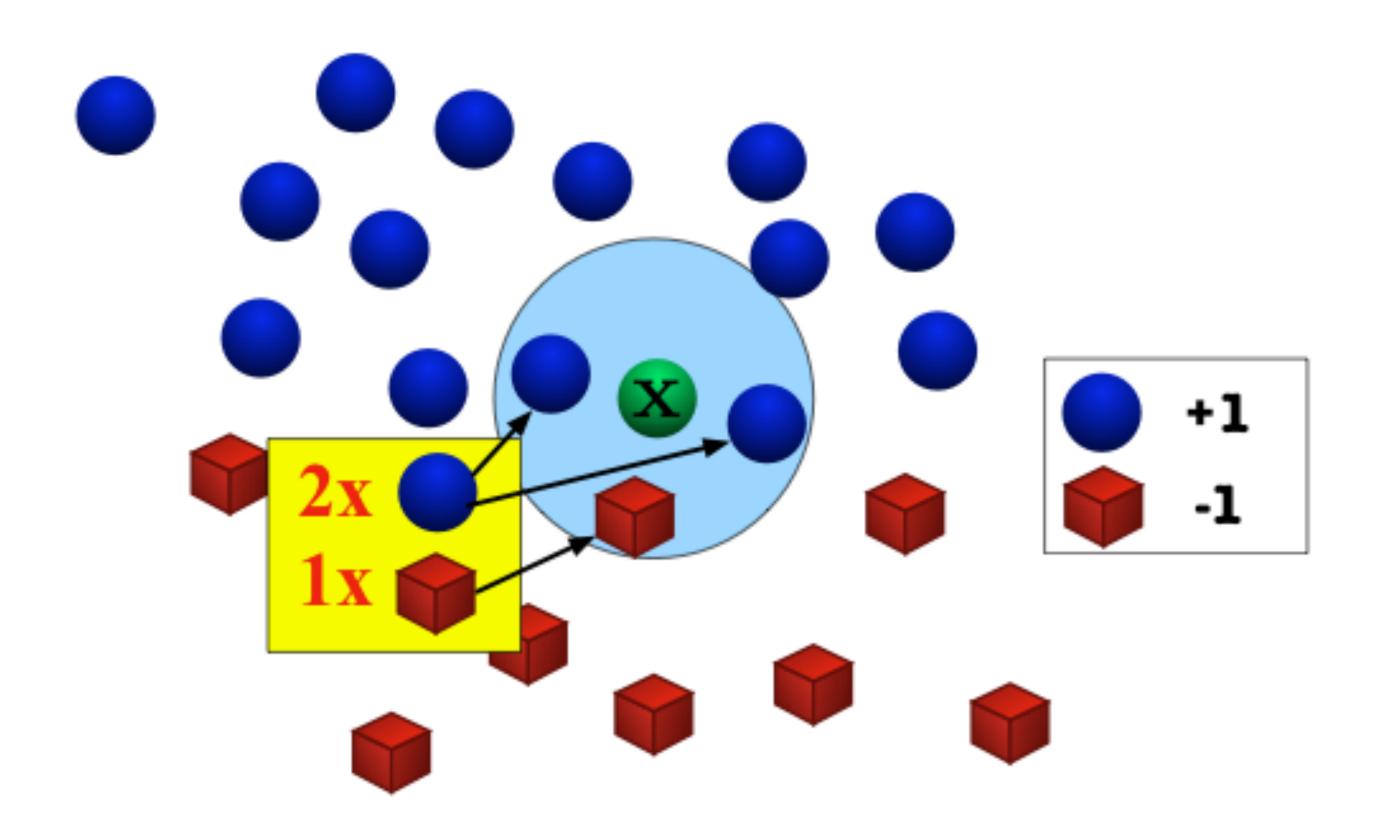
Find its top K nearest neighbors (under metric d)

Return the most common label among these K neighbors

(If for regression, return the average value of the K neighbors)

The K-NN Algorithm

Example: 3-NN for binary classification using Euclidean distance



The choice of metric

1. We assume our metric d captures similarities between examples:

Examples that are close to each other under distance d share similar labels

Another example: Manhattan distance (\mathcal{C}_1)

$$d(x, x') = \sum_{j=1}^{d} |x[j] - x'[j]|$$

The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

label has noise (easily overfit to the noise)

(What about the training error when K = 1?)

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Assume we know P(y | x) for now

Q: what label you would predict?

A: we will simply predict the most-likely label,

$$h_{opt}(x) = \underset{y \in \{-1,1\}}{\operatorname{arg}} \max_{P(y|x)} P(y|x)$$

Bayes optimal predictor

Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor:
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

Example:

$$\begin{cases} P(1 | x) = 0.8 \\ P(-1 | x) = 0.2 \end{cases}$$
$$y_b := h_{opt}(x) = 1$$

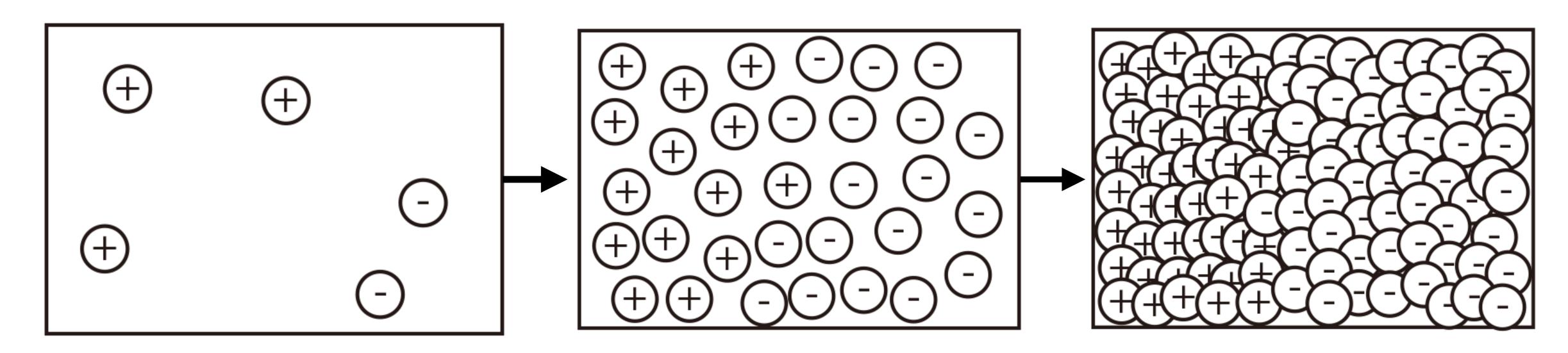
Q: What's the probability of h_{opt} making a mistake on x?

$$\epsilon_{opt} = 1 - P(y_b | x) = 0.2$$

Guarantee of KNN when K=1 and $n\to\infty$

Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

What does it look when $n \to \infty$?



Given test x, as $n \to \infty$, its nearest neighbor x_{NN} is super close, i.e., $d(x, x_{NN}) \to 0$!

Guarantee of KNN when K=1 and $n\to\infty$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq 1 \mid x) = P(y = -1 \mid x)$

$$= 1 - P(y_b | x)$$

Guarantee of KNN when K=1 and $n\to\infty$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

The probability of making a mistake: $\epsilon = 1 - P(y_b | x)$

Case 2 when $y_{NN} = -1$ (it happens w/ prob $P(-1 \mid x_{NN}) = P(-1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq -1 \mid x) = P(y = 1 \mid x) = P(y_b \mid x)$

Final prediction error at x:

$$P(1|x)(1 - P(y_b|x)) + P(-1|x)P(y_b|x) = P(1|x)(1 - P(y_b|x)) + (1 - P(y_b|x))P(y_b|x)$$

$$\leq (1 - P(y_b|x)) + (1 - P(y_b|x)) = 2\epsilon_{opt}$$

What happens if K is large?

(e.g., K = 1e6, $n \to \infty$)

A: Given any x, the K-NN should return the y_b — the solution of the Bayes optimal

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

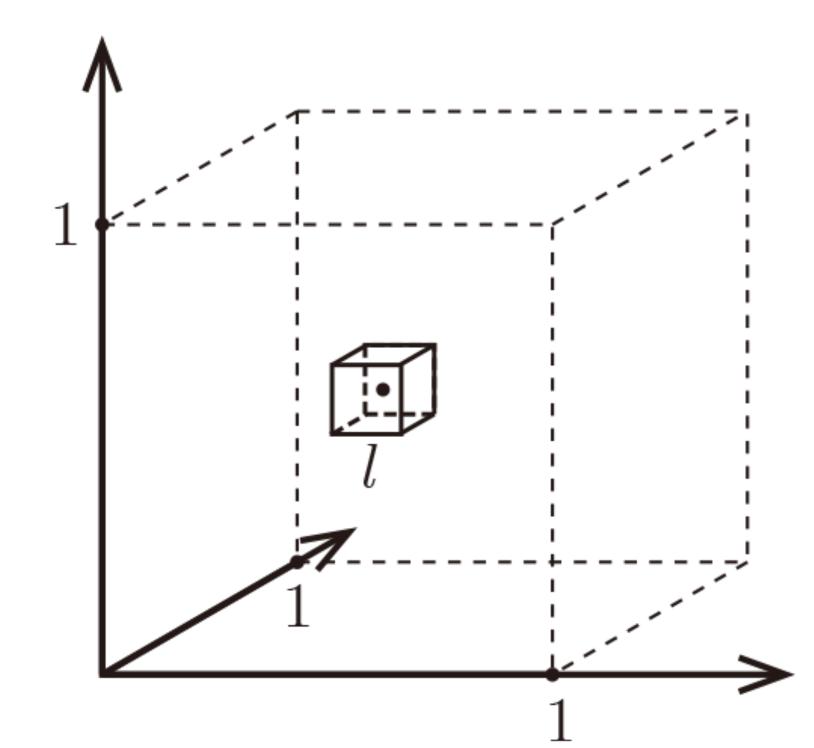
Curse of dimensionality!

The bound is meaningless when $d \to \infty$, while n is some finite number!

Curse of Dimensionality Explanation

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

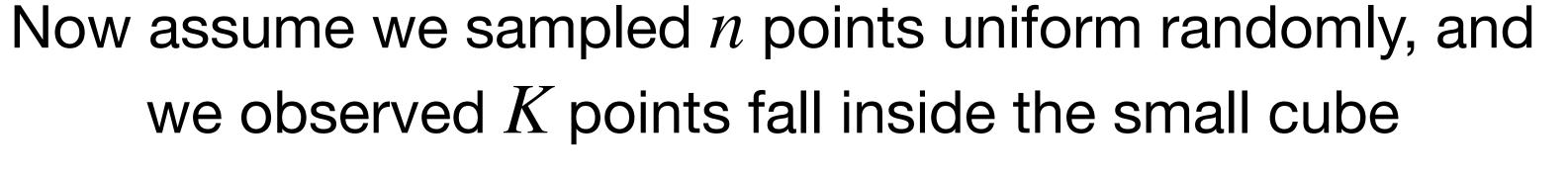


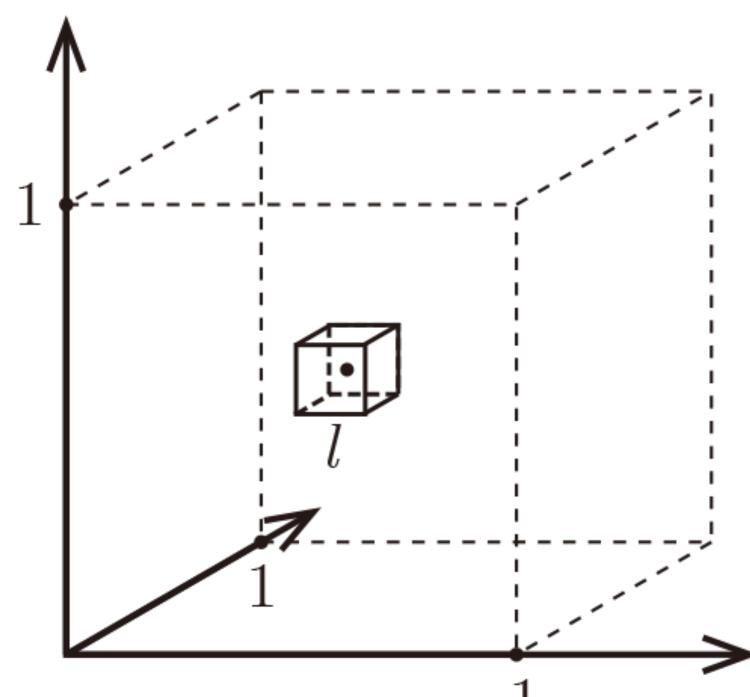
Q: sample x uniformly, what is the probability that x is inside the small cube?

A: Volume(small cube)/volume($[0,1]^d$) = l^d

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0,1]^d$





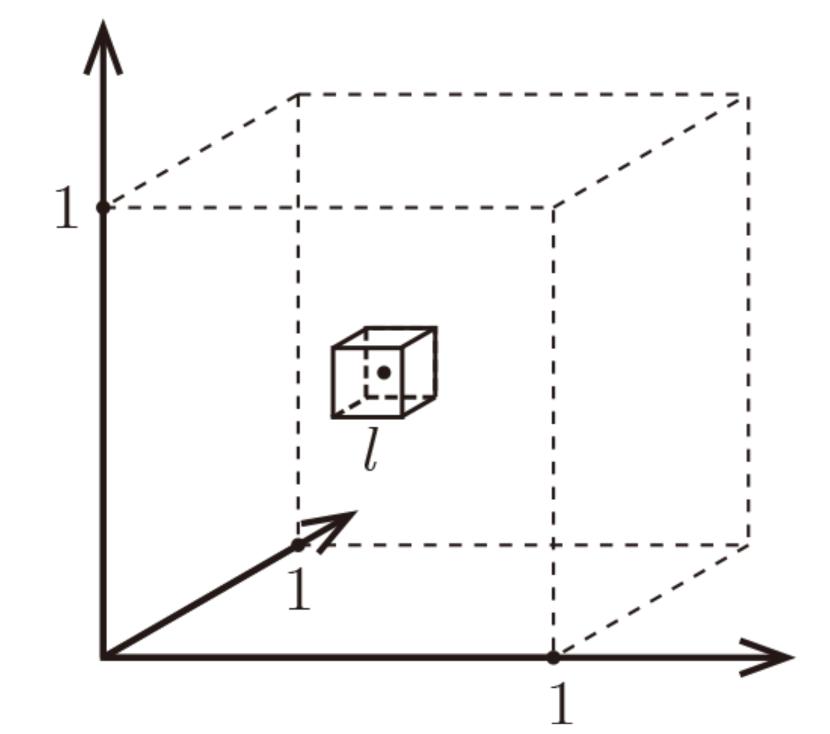
So empirically, the probability of sampling a point inside the small cube is roughly K/n

Thus, we have
$$l^d \approx \frac{K}{n}$$

Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{m}$$



Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \rightarrow 1$$
, as $d \rightarrow \infty$

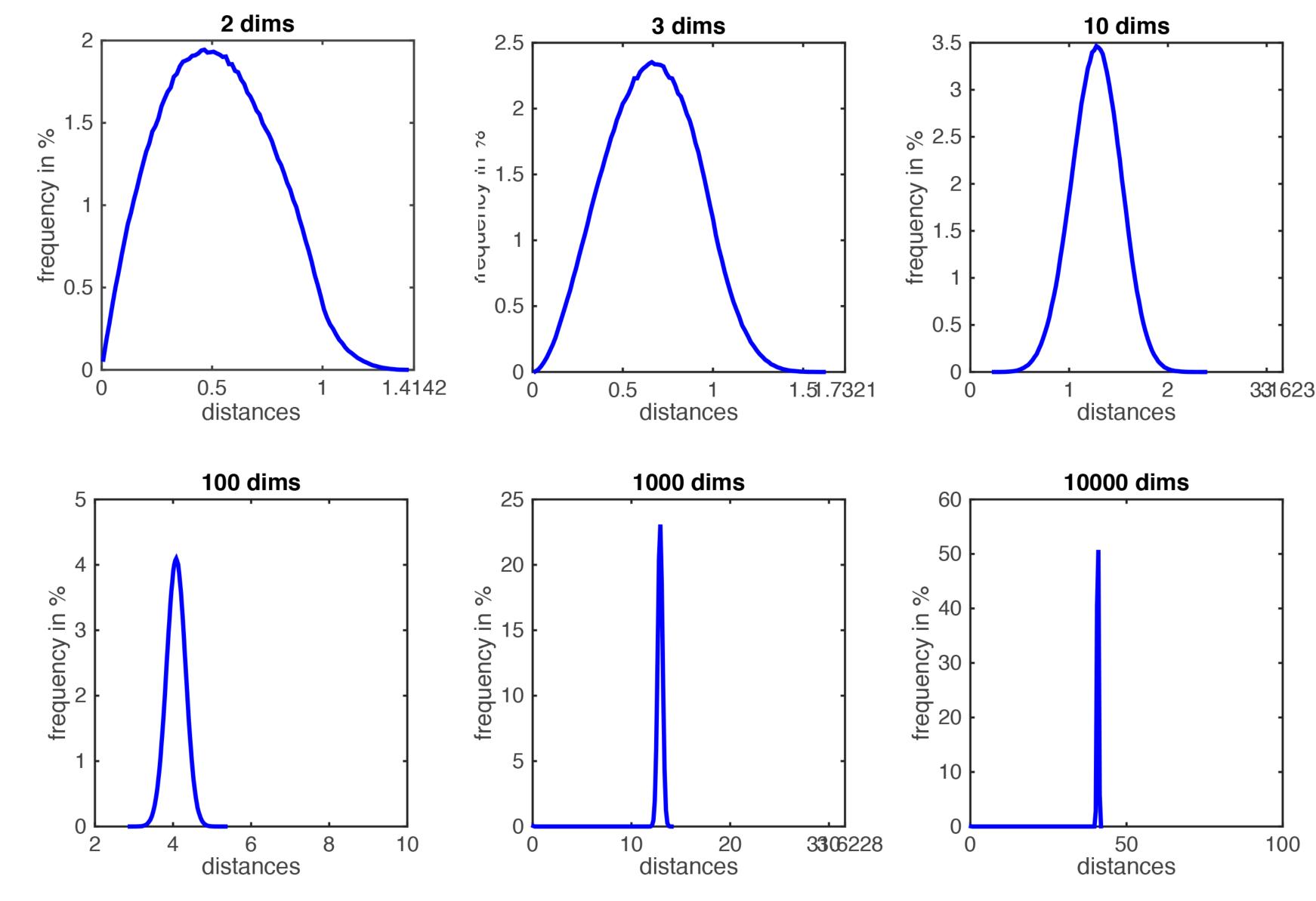
Bad news: when $d \to \infty$, the K nearest neighbors will be all over the place! (Cannot trust them, as they are not nearby points anymore!)

The distance between two sampled points increases as d grows

In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x,x') = ||x-x'||_2$

Let's plot the distribution of such distance:

Q: can you compute $\mathbb{E}_{x,x'}||x-x'||_2^2 ?$

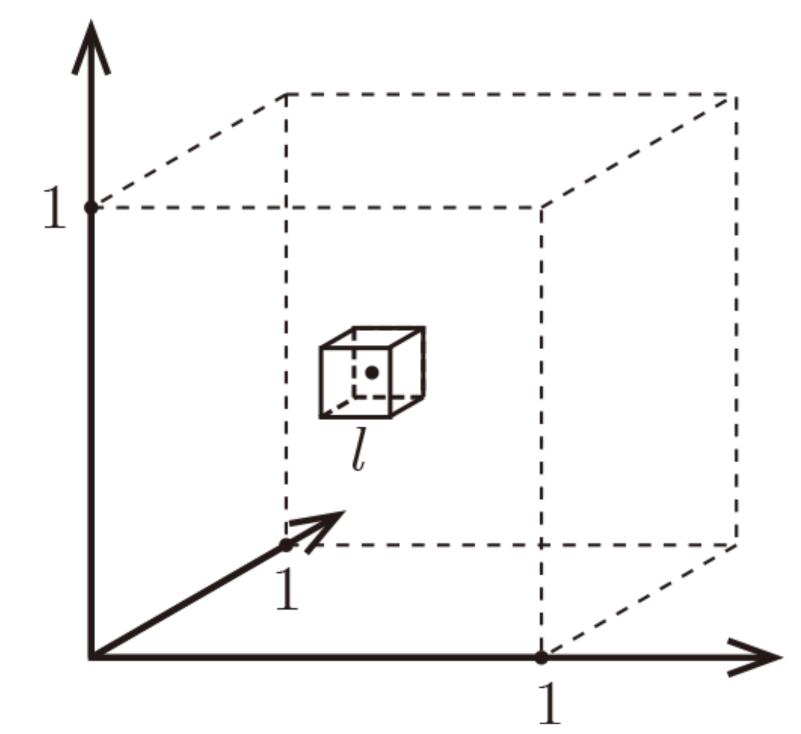


Distance increases as $d \rightarrow \infty$

Well, can we just increase n to avoid this?

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$



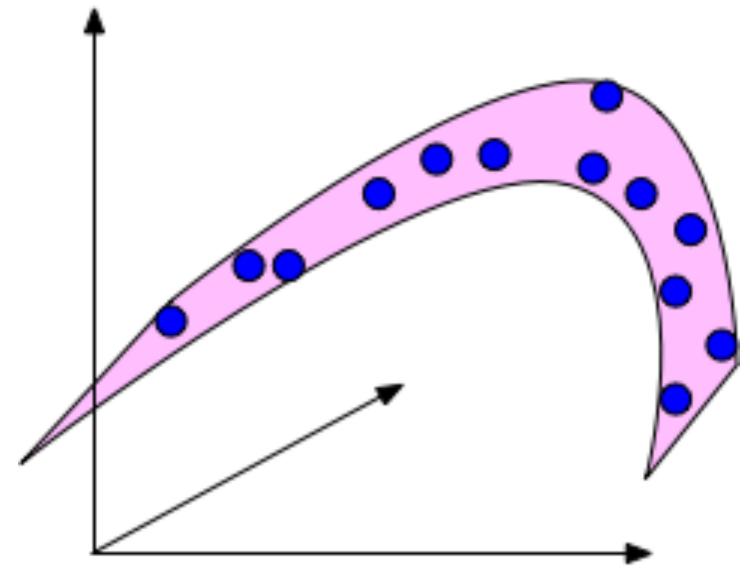
Q: to make sure that we have one sample inside a small cube, how large n needs to be?

Set
$$\ell = 0.1$$
, $K = 1$, then $n = 1/(0.1)^d = 10^d$

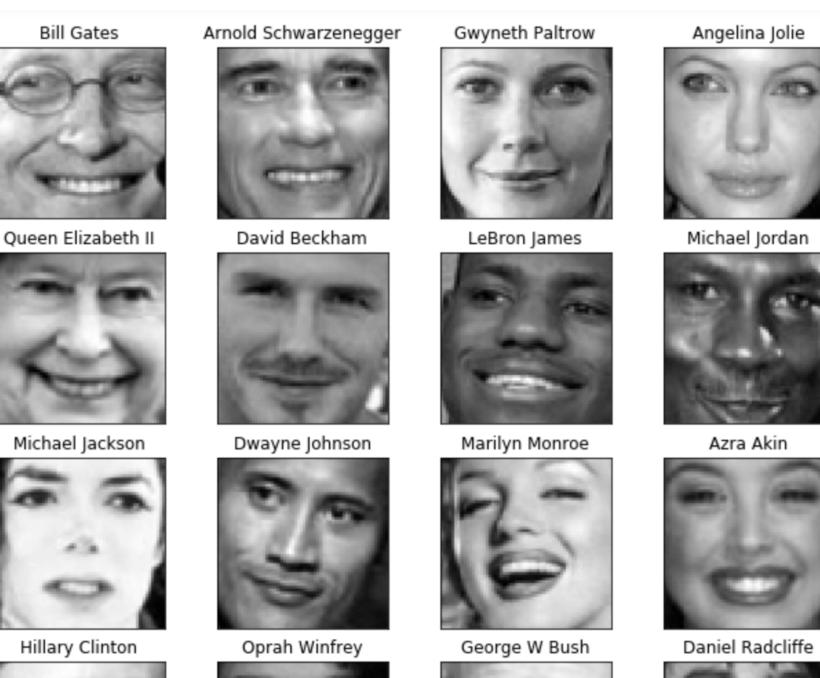
Bad news: when $d \ge 100$, # of samples needs to be larger than total # of atoms in the universe!

Luckily, real world data often has low-dimensional structure!

Example: face images Bill Gates Arnold Schwarzenegger Gwyneth Paltrow And Company Com



Data lives in 2-d manifold



Original image: \mathbb{R}^{64^2}

Next week: we will see that these faces approximately live in 100d space!

Summary for Today

- 1. K-NN: the simplest ML algorithm (very good baseline, should always try!)
 - 2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)
 - 3. Suffer when data is high-dimensional, due to the fact that in high-dimension space, data tends to spread far away from each other