
K-nearest Neighbor

 



Announcements:

1. HW1 will be out today / early tomorrow and Due Sep 12

2. P1 will be out later this week

3. First paper reading quiz will be out later this week (for 5780)



Recap on ML basics

T/F:  zero-one loss is a good loss function for regression

T/F:  A hypothesis that achieves zero training error is always good

T/F: We can use validation dataset to check if our model overfits



Objective

Understand KNN — our first ML algorithm that can do both regression and classification



Outline for Today

1. The K-NN Algorithm

3. Curse of dimensionality (i.e., when it can fail)

2. Why/When does K-NN work
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The K-NN Algorithm
Input: classification training dataset , and parameter , 


and a distance metric   (e.g.,  euclidean distance)
{xi, yi}n

i=1 K ∈ ℕ+

d(x, x′ ) ∥x − x′ ∥2

K-NN Algorithm: 

For any test point  : x

Find its top K nearest neighbors (under metric )  d
Return the most common label among these K neighbors
(If for regression, return the average value of the K neighbors)

Store all training data 



The K-NN Algorithm

Example: 3-NN for binary classification using Euclidean distance
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The choice of metric

1. We assume our metric  captures similarities between examples: d

Examples that are close to each other under distance  share similar labelsd

Another example: Manhattan distance ( )ℓ1

d(x, x′ ) =
d

∑
j=1

|x[ j] − x′ [ j] |
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The choice of K

1. What if we set  very large? K

Top K-neighbors will include examples that are very far away…

2. What if we set  very small (K=1)? K

label has noise (easily overfit to the noise)

(What about the training error when K = 1?)



Outline for Today

1. The K-NN Algorithm

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

2. Why/When does K-NN work
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Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e.,  (say )(x, y) ∼ P y ∈ {−1,1}

hopt(x) = arg max
y∈{−1,1}

P(y |x)Bayes optimal predictor:

Example:

{P(1 |x) = 0.8
P(−1 |x) = 0.2

yb := hopt(x) = 1

Q: What’s the probability of 
 making a mistake on ? hopt x

ϵopt = 1 − P(yb |x) = 0.2
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Guarantee of KNN when  and K = 1 n → ∞

Assume ,  has support everywhere  x ∈ [−1,1]2 P(x) P(x) > 0,∀x ∈ [−1,1]2

What does it look when n → ∞?

Given test , as , its nearest neighbor  is super close, i.e., !x n → ∞ xNN d(x, xNN) → 0
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Proof:
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3. Calculate the 1-NN’s prediction error:

= 1 − P(yb |x)
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Guarantee of KNN when  and K = 1 n → ∞

Theorem: as , 1-NN prediction error is no more than 
twice of the error of the Bayes optimal classifier

n → ∞

Case 1 when  (it happens w/ prob ):yNN = 1 P(1 |xNN) = P(1 |x)
The probability of making a mistake: ϵ = 1 − P(yb |x)

= P(yb |x)
Case 2 when  (it happens w/ prob ):yNN = − 1 P(−1 |xNN) = P(−1 |x)

The probability of making a mistake: ϵ = P(y ≠ − 1 |x) = P(y = 1 |x)

Final prediction error at : x
P(1 |x)(1 − P(yb |x)) + P(−1 |x)P(yb |x)

≤ (1 − P(yb |x)) + (1 − P(yb |x)) = 2ϵopt

= P(1 |x)(1 − P(yb |x)) + (1 − P(yb |x))P(yb |x)
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K
K = 1e6, n → ∞



What happens if  is large?  
(e.g.,  )

K
K = 1e6, n → ∞

A: Given any , the K-NN should return the  — the solution of the Bayes optimalx yb
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Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix , assume , assume  is Lipschitz 
continuous with respect to , i.e., 

n ∈ ℕ+ x ∈ [0,1]d P(y |x)
x |P(y |x) − P(y |x′ ) | ≤ d(x, x′ )

Then, we have:

 ,x,y∼P [1(y ≠ 1NN(x))] ≤ 2,x,y∼P [1(y ≠ hopt(x))] + O (( 1
n )

1/d

)
The bound is meaningless when , 

while  is some finite number! 
d → ∞

nCurse of dimensionality! 
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Curse of Dimensionality Explanation

Key problem: in high dimensional space, points that are draw from a 
distribution tends to be far away from each other! 

Example: let us consider uniform distribution over a cube [0,1]d

Q: sample  uniformly, what is the probability that  
is inside the small cube? 

x x

A:  Volume(small cube)/volume([0,1]d) = ld
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Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈ K
n

We have Q: how large we should set , s.t., we will 
have K examples (out of n) fall inside the 

small cube? 

l

l ≈ (K/n)1/d → 1, as d → ∞

Bad news: when , the K nearest 
neighbors will be all over the place! 


(Cannot trust them, as they are not nearby 
points anymore!) 

d → ∞
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The distance between two sampled points increases as  growsd

In , we uniformly 
sample two points , 

calculate 
 

[0,1]d

x, x′ 

d(x, x′ ) = ∥x − x′ ∥2

Let’s plot the 
distribution of 
such distance:

Distance increases as d → ∞

Q: can you compute 
  ? ,x,x′ 

∥x − x′ ∥2
2
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Well, can we just increase n to avoid this?

Example: let us consider uniform distribution over a cube [0,1]d

ld ≈ K
n

We have Q: to make sure that we have one sample 
inside a small cube, how large  needs to be? n

Bad news: when , # of samples 
needs to be larger than total # of atoms in the 

universe!

d ≥ 100

Set , , then  ℓ = 0.1 K = 1 n = 1/(0.1)d = 10d
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Luckily, real world data often has low-dimensional structure!

Data lives in 2-d manifold

Example: face images

Original image:  ℝ642

Next week: we will see 
that these faces 

approximately live in 100-
d space!
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Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

3. Suffer when data is high-dimensional, due to the fact that in high-
dimension space, data tends to spread far away from each other

2. Works well when data is low-dimensional (e.g., can compare 
against the Bayes optimal)


