
Bias-Variance Tradeoff



Overview of the second half the semester

1. A little bit Learning Theory 

2. Make our linear models nonlinear (Kernel)

3. How to combine multiple classifiers into a stronger one (Bagging & Boosting)? 

4. Intro of Neural Networks (old and new)



Objective

Understand Bias-Variance tradeoff — When and why your ML models 
work (or don’t work)

Err

Complex modelSimple model

Training

Test

Why this “U shape” in 
test case?



Outline of Today

1. Intro on Underfitting/Overfitting and Bias/Variance

2. Derivation of the Bias-Variance Decomposition



Bayes optimal predictor

Consider regression problem w/ dataset 𝒟 = {x, y}, (x, y) ∼ P, x ∈ ℝ, y ∈ ℝ

x (e.g., size of the house)

y The Bayes optimal regressor:

ȳ(x) := 𝔼[y |x]

The best we could do, cannot 
beat this one

ȳ(x) = w0 + w1x + w2x2



Underfitting

x (e.g., size of the house)

y ȳ(x) = w0 + w1x + w2x2

x (e.g., size of the house)

y

(Just right) Underfitting

h𝒟(x) = w0 + w1x



Underfitting

x (e.g., size of the house)

y
Just right versus Underfitting

Bias:

Bias towards to linear models



Underfitting

x (e.g., size of the house)

y

Now let’s redo linear regression on a different dataset  (but from the same distribution)𝒟′ 

The new linear function does not differ too 
much from the old one

This is called low variance

Q: what happens when our linear 
predictor is ?h(x) = w0



Summary on underfitting

1. Often our model is too simple, i.e.., we bias towards too simple models

2. This causes underfitting, i.e., we cannot capture the trend in the data

3. In this case, we have large bias, but low variance (think about the  case)h(x) = w0



Overfitting

x (e.g., size of the house)

y ȳ(x) = w0 + w1x + w2x2

x (e.g., size of the house)

y

(Just right) Overfitting

h𝒟(x) = w0 + w1x + w2x2 + … + w6x5



Overfitting

x (e.g., size of the house)

y

Just right versus Overfitting

No strong bias:

Our hypothesis class is all 
polynomials up to 5-th order

i.e., a priori, no strong bias towards 
linear or quadratic, or cubic, etc 



Overfitting

x (e.g., size of the house)

y

Redo the higher-order polynomial fitting on different dataset 𝒟′ 

The new function can differ a lot from the 
old one

This is called high variance



Summary on Overfitting

1. Often our model is too complex (e.g., can fit noise perfectly to achieve zero training error)

2. This causes overfitting, i.e., cannot generalize well on unseen test example

3. In this case, we have small bias, but large variance 

(tiny change on the dataset cause large change in the fitted functions)



Outline of Today

1. Intro on Underfitting/Overfitting and Bias/Variance

2. Derivation of the Bias-Variance Decomposition



Generalization error

Given dataset , a hypothesis class , squared loss ,  
denote  as the ERM solution

𝒟 ℋ ℓ(h, x, y) = (h(x) − y)2

h𝒟

We are interested in the generalization error of : h𝒟

𝔼𝒟𝔼x,y∼P(h𝒟(x) − y)2

Q: how to estimate this in practice?



The expectation of our model h𝒟

Since  is random, we consider its expected behavior:h𝒟

h̄ := 𝔼𝒟 [h𝒟]

h̄(x) = 𝔼𝒟 [h𝒟(x)], ∀x

In other words, we have:
Q: what is  is the case where 

hypothesis is ?
h̄

h(x) = w0

A: h̄(x) = 𝔼y[y]



Formal definition of Bias and Variance

h̄ := 𝔼𝒟 [h𝒟]

Bias : (squared )difference between  and the best , i.e.,  2 h̄ ȳ(x) 𝔼x (ȳ(x) − h̄(x))2

Variance: difference from  and , i.e.,  h̄ h𝒟 𝔼𝒟𝔼x (h𝒟(x) − h̄(x))2

ȳ(x) := 𝔼[y |x]

Difference between our mean and the best

Fluctuation of our random model around its mean



Bias-Variance illustration



Generalization error decomposition

h̄ := 𝔼𝒟 [h𝒟] ȳ(x) := 𝔼[y |x]

𝔼𝒟𝔼x,y∼P(h𝒟(x) − y)2

= Bias  + Variance + Noise (unavoidable, independent of Algs/models)2

We will use the following trick twice: (x − y)2 = (x − z)2 + (z − y)2 + 2(x − z)(z − y)

What we gonna show now:



𝔼(h𝒟(x) − y)2

= 𝔼(h𝒟(x) − h̄(x) + h̄(x) − y)2

= 𝔼(h𝒟(x) − h̄(x))2 + 𝔼(h̄(x) − y)2 + 2𝔼𝒟,x,y [(h𝒟(x) − h̄(x))(h̄(x) − y)]

This term is zero since:

𝔼x,y,𝒟 [(h𝒟(x) − h̄(x))(h̄(x) − y)]
= 𝔼x,y [𝔼𝒟(h𝒟(x) − h̄(x)) ⋅ (h̄(x) − y)]
= 𝔼x,y [(h̄(x) − h̄(x)) ⋅ (h̄(x) − y)]



𝔼(h𝒟(x) − y)2

= 𝔼(h𝒟(x) − h̄(x))2 + 𝔼(h̄(x) − y)2

Variance

= 𝔼(h̄(x) − ȳ(x) + ȳ(x) − y)2

= 𝔼(h̄(x) − ȳ(x))2 + 𝔼(ȳ(x) − y)2

+2𝔼(h̄(x) − ȳ(x))(ȳ(x) − y)

This term is zero since:

= 𝔼x [(h̄(x) − ȳ(x)) ⋅ 𝔼y|x(ȳ(x) − y)]
= 𝔼x [(h̄(x) − ȳ(x)) ⋅ (ȳ(x) − 𝔼y|x[y])]



𝔼(h𝒟(x) − y)2 = 𝔼(h𝒟(x) − h̄(x))2 + 𝔼(h̄(x) − ȳ(x))2 + 𝔼(ȳ(x) − y)2

Putting the derivations together, we arrive at:

Variance Bias^2 Noise

Note that the noise term is 
independent of training algorithms / 

models


