
Neural Networks
Cornell CS 4/5780 — Spring 2022

Neural networks are also known as multi-layer perceptrons and deep nets.

Original Problem:

How can we make linear classi�ers non-linear?

Where Kernalization is a clever way to make inner products computationally tractable.

Neural network learns

Each is a linear classi�er. This learns how level problem that are
"simpler". E.g. In digit classi�cation, these detect vertical edges, round
shapes, horizontals. Their output then becomes the input to the main
linear classi�er. and

Forward Propagation:

Quiz: Try to express in terms of in matrix
notation

We need to learn . We can do so through gradien descent.

Back propagation:

Loss function for a single example: (For the entire training a set average
over all training points.)

Where and

We learn with gradient descent. Observation (chain rule):

Let and (i.e.)

Gradients are easy if we know (are for deeper neural nets.)

So, what is ?

Note that and .

wT + b → wT Φ(x) + b

Φ(x)

Φ :

Φ(x) =
⎡⎢⎣h1(x)

⋮
hm(x)

⎤⎥⎦hi(x)

a′
j = ∑k w′

jk + b′ aj = ∑j wjkz′
j + b.

vecZ w, w′, b, b′, f, y

w, w′, b, b′

L(→x, →y) =
1
2

(H(→x) − →y)2

H(→x) = →z L = 1
2 (→z − →y)2.

W

∂L

∂wij

=
∂L

∂αi

∂αi

∂wij

=
∂L

∂αi

Z ′
j

∂L

∂w′
jk

=
∂L

∂α′
j

∂L

∂α′
j

xk =
∂L

∂α′
j

Z ′′
k .

→δ = ∂L

∂→α
→δ′ = ∂L

∂ →α′
δ′

j = ∂L

∂α′
j

→δ, →δ′, →δ′′, →δ′′′ →δ′′, →δ′′′

δ

δi = ∂L
∂αi

= ∂L
∂zi

∂zi

∂αi
= (zi − yi)g′(αi) = →g′(→α) ∘ (→z − →y)

L = 1
2 (zi − yi)2 zi = g(αi)

δ′
j = ∂L

∂α′
j

= ∑i
∂L
∂zi

∂zi

∂αi

∂αi

∂z′
j

∂z′
j

∂α′
j

= ∑i δi
∂αi

∂z′
j

∂z′
j

∂α′
j

Typical transition functions:

In the "Old Days", sigmoid and tanh were most popular.
Nowadays, Recti�ed Linear Unit (Relu) are pretty fashionable.

Algorithms:

Forward Pass:

Backward Pass:

Notet hat , , and

Famous Theorems:

ANN are univeral approximators (like SVMS, GPs, ...)
Theoretically, a ANN with one hidden layer is as expressive as one
with many hidden layers in practice if many nodes are used.
Any continuous piecewise linear function can be represented by a
ReLU network.

Over�tting in ANN:

Neural Networks learn lots of parameters and therefore are prone to
over�tting. This is not necessarily a problem as long as you use
regularization. Two popular reglarizers are the following:

1. Weight Decay:
Use regularization on all weights (including bias terms).

2. Dropout:
For each input (or mini-batch) randomly remove each hidden
node with probability p (e.g. p=0.5) these nodes stay removed
during the backprop pass, however are included again for the next
input.

Avoidance of local minima

1. use momentum: Decline

(i.e. still use some portion of previous gradient to keep you pushing out
of small local minima.)

2. Initialize weights cleverly (not all that important)
e.g. use Autoencoders for unsupervised pre-training
3. use Relu instead of sigmoid/tanh (weights don't saturate)

Tricks and Tips

Rescale your data so that all features are within [0,1]
Lower learning rate
use mini-batch (i.e. stochastic gradient descent with maybe 100
inputs at a time - make sure you shu�e inputs rnadomly �rst.)
for image use convolution neural network

∂L

∂zi

∂zi

∂αi
= δi α = ∑j wijz

′
j + b

∂z′
j

∂α′
j

= δ′(α′
j)

f ′(α′
j)∑i δiWij = →f ′(→α′) ∘ (W T δ)

l2

▽wt = Δwt + μ▽wt−1

w = w − α▽wt

