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Using Impurity to Build A Tree: ID3-Algorithm

Base Cases: given dataset 

If all examples in  have the same label , return leaf with label .
If all examples in  have the same features , return leaf with label  either the mode (for classificaton) or the mean (for regression) of labels in the dataset.

Recursive Case:

Try all features and all possible splits.
For a discrete-valued feature, we split creating one child for each value the feature could take on.
For a continuous-valued feature we try all possible thresholds for a binary split.

Choose the feature split that minimizes the impurity! (Or just pick one if multiple minimizers.)
Then call ID3 recursively on each of the subsets of the split. (If one of those subsets is empty, just create for it a leaf node with label  either the mode (for
classificaton) or the mean (for regression) of labels in the dataset.)
Output a tree that stores the selected feature and split threshold and has the outputs of the recursive ID3 calls as children.

Quiz: Why don't we stop if no split can improve impurity?

CART summary: CART are very light-weight predictors. They are very fast during testing (if balanced, test time is roughly logarithmic in model size; how does
this compare to linear models?). But, they're usually not competitive in accuracy. Fortunately, trees can become very strong through bagging (Random Forests)
and boosting (Gradient Boosted Trees).

Bagging

Also known as Bootstrap Aggregating (Breiman 96). Bagging is an ensemble method, which combines multiple classifiers to reduce variance.
Remember the
Bias/Variance decomposition:

Our goal is to reduce the variance term: . For this, we want .
The weak law of large numbers says (roughly) for i.i.d. random
variables  with mean , we have,
  in the limit as 
Apply this to classifiers: Assume we have m training sets 
drawn from . Train a classifier on each one and average result:

We refer to such an average of multiple classifiers as an ensemble of classifiers.

Good news: If  the variance component of the error must also vanish, i.e.
 


Problem:We don't have  data sets , we only have D.

Solution: Bagging (Bootstrap Aggregating)

Simulate drawing from P by drawing uniformly with replacement from the set D:
i.e. let  be a probability distribution that picks a training sample 
 from  uniformly at random. More formally,  for all  with .
We sample the set , i.e. 

and  is picked with replacement from .

Q: What is ?

Ensemble classifier/regressor: 

Observe that  in the limit as the size of the ensemble  and the original training set size  go to infinity at appropriate rates. But
we can't just use the weak law of large numbers to show this.

Analysis

Although we cannot prove that the new samples are i.i.d., we can show that they are drawn from the original distribution .
 Assume P is discrete, with 
 over some set  (N very large)
(let's ignore the label for now for simplicity)
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So each data set  is drawn from P, but not independently. There is a simple intuitive argument why . So far we assumed that you
draw  from  and then  picks a sample from . However, you don't have to do it in that order. You can also view sampling from  in reverse order:
Consider that you first use  to reserve a "spot" in , i.e. a number from 1,...,n, where i means that you sampled the  data point in . So far you only have
the slot, , and you still need to fill it with a data point . You do this by sampling  from . It is now obvious that which slot you picked doesn't
really matter, so we have .

Bagging summarized

1. Sample  data sets  from  with replacement.
2. For each  train a classifier 
3. The final classifier is .

In practice larger  results in a better ensemble, however at some point you will obtain diminishing returns. Note that setting  unnecessarily high will only
slow down your classifier but will not increase the error of your classifier.

Advantages of Bagging

Easy to implement
Reduces variance, so has a strong beneficial effect on high variance classifiers.
As the prediction is an average of many classifiers, you obtain a mean score and variance. Latter can be interpreted as the uncertainty of the prediction.
Especially in regression tasks, such uncertainties are otherwise hard to obtain. For example, imagine the prediction of a house price is $300,000. If a buyer
wants to decide how much to offer, it would be very valuable to know if this prediction has standard deviation +-$10,000 or +-$50,000.

Bagging provides an unbiased estimate of the test error, which we refer to as the out-of-bag error. The idea is that each training point was not picked and all
the data sets . If we average the classifiers  of all such data sets, we obtain a classifier (with a slightly smaller ) that was not trained on  ever
and it is therefore equivalent to a test sample. If we compute the error of all these classifiers, we obtain an estimate of the true test error. The beauty is that we
can do this without reducing the training set. We just run bagging as it is intended and obtain this so called out-of-bag error for free.

More formally, for each training point  let  - in other words  is a set of all the training sets , which do not

contain . Let the averaged classifier over all these data sets be
 
 Then the-of-bag error becomes simply the average

error/loss that all these classifiers yield

This is an estimate of the test error, because for each training point we used the subset of classifiers that never saw that training point during training. if  is
sufficiently large, the fact that we take out some classifiers has no significant effect and the estimate is pretty reliable.

Random Forest

One of the most famous and useful bagged algorithms is the Random Forest! A Random Forest is essentially nothing else but bagged decision trees, with a
slightly modified splitting criteria.
The algorithm works as follows:


1. Sample  data sets  from  with replacement.
2. For each  train a full decision tree  (max-depth= ) with one small modification: before each split randomly subsample  features (without

replacement) and only consider these for your split. (This further increases the variance of the trees.)
3. The final classifier is .

The Random Forest is one of the best, most popular and easiest to use out-of-the-box classifier.
There are two reasons for this:

The RF only has two hyper-parameters,  and . It is extremely insensitive to both of these. A good choice for  is  (where  denotes the number
of features). You can set  as large as you can afford.
Decision trees do not require a lot of preprocessing. For example, the features can be of different scale, magnitude, or slope. This can be highly advantageous
in scenarios with heterogeneous data, for example the medical settings where features could be things like blood pressure, age, gender, ..., each of which is
recorded in completely different units.

Useful variants of Random Forests:

Split each training set into two partitions , where . Build the tree on  and estimate the leaf labels on . You must
stop splitting if a leaf has only a single point in  in it. This has the advantage that each tree and also the RF classifier become consistent.
Do not grow each tree to its full depth, instead prune based on the leave out samples. This can further improve your bias/variance trade-off.
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https://en.wikipedia.org/wiki/Consistency_(statistics)

