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Handcrafted Feature Expansion. Linear classi�ers are great, but what if there exists no linear decision boundary? As it turns out, there is an elegant way to
incorporate non-linearities into most linear classi�ers. We can make linear classi�ers non-linear by applying basis function (feature transformations) on the input
feature vectors. Formally, for a data vector , we apply the transformation  where . Usually  because we add dimensions
that capture non-linear interactions among the original features.

Question: In the �gure to the right, what would be a good transformation to use? What
would be a bad transformation?

Advantage: It is simple, and your problem stays convex and well behaved. (i.e. you can
still use your original gradient descent code, just with the higher dimensional representation)

Disadvantage:  might be very high dimensional.

Consider the following example: , and de�ne .

Quiz: What is the dimensionality of ?

This new representation, , is very expressive and allows for complicated non-linear decision boundaries - but the dimensionality is extremely high. This
makes our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the much higher dimensional space, without ever computing a single vector 
or ever computing the full vector . It is based on the following observation: If we use gradient descent with any one of our standard loss functions, the gradient
is a linear combination of the input samples. For example, let us take a look at the squared loss:  The gradient descent rule, with
step-size/learning-rate  (we denoted this as  in our previous lectures), updates  over time,

We will now show that we can express  as a linear combination of all input vectors,

Since the loss is convex, the �nal solution is independent of the initialization, and we can initialize  to be whatever we want. For convenience, let us pick 
 the all-0 vector. For this initial choice of , the linear combination in  is trivially . Throughout the entire

gradient descent optimization such coe�cients  must always exist, as we can re-write the gradient updates entirely in terms of updating the 
coe�cients. Formally, the argument is by induction.  is trivially a linear combination of our training vectors for  (base case). If we apply the inductive
hypothesis for  it follows for .

The update-rule for  is thus  In other words, we can perform the entire gradient descent update
rule without ever expressing  explicitly. We just keep track of the  coe�cients . Now that  can be written as a linear combination of the
training set, we can also express the inner-product of  with any input  purely in terms of inner-products between training inputs:
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Consequently, we can also re-write the squared-loss from  entirely in terms of inner-product between training inputs:

Quiz: How would you write the test-time classi�er in terms of these  parameters?

Inner-Product Computation

Let's go back to the previous example, of feature map  consisting of polynomials of degree-up-to-d in  and degree at most 1 in each . The inner product 
 can be formulated as:

The sum of  terms becomes the product of  terms. We can compute the inner-product from the above formula in time  instead of ! We de�ne
the function

With a �nite training set of  samples, inner products are often pre-computed and stored in a Kernel Matrix (a.k.a. Gram Matrix):

If we store the matrix , we only need to do simple inner-product look-ups and low-dimensional computations throughout the gradient descent algorithm.
During training in the new high dimensional space of  we want to compute  through kernels, without ever computing any  or even .

How does this a�ect the computational cost of our linear regressor?

General Kernels

Below are some popular kernel functions:

Linear: . (The linear kernel is equivalent to just using a good old linear classi�er - but it can be faster to use a kernel matrix if the dimensionality 
 of the data is high.)

Polynomial: .

Radial Basis Function (RBF) (aka Gaussian Kernel): . The RBF kernel is the most popular Kernel! It is a Universal approximator!! Its
corresponding feature vector is in�nite dimensional and cannot be computed. However, very e�ective low dimensional approximations exist (see this paper).

Exponential Kernel: 

Laplacian Kernel: 

Sigmoid Kernel: 

Can any function  be used as a kernel?
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