Kernels

Cornell CS 4/5780 — Spring 2022

Handcrafted Feature Expansion. Linear classifiers are great, but what if there exists no linear decision boundary? As it turns out, there is an elegant way to
incorporate non-linearities into most linear classifiers. We can make linear classifiers non-linear by applying basis function (feature transformations) on the input
feature vectors. Formally, for a data vector x € RY, we apply the transformation X — ¢(x) where ¢(x) € RP. Usually D >> d because we add dimensions

that capture non-linear interactions among the original features.

Dataset for Linear Regression
Question: In the figure to the right, what would be a good transformation to use? What x x
1.5 x
would be a bad transformation?
1.0 *
x
0.5 4 x
-
E
& 00 x
Aé x
5 05 * %
x
—1.0 4 X
X
=154 xX %
x
X
—2.04 x X x
—ZI‘D —1‘.5 —ll‘ﬂ —6‘5 0.'0 0.‘5 l.‘U l.l5 2.‘0
input feature x

Advantage: It is simple, and your problem stays convex and well behaved. (i.e. you can
still use your original gradient descent code, just with the higher dimensional representation)
Disadvantage: ¢(x) might be very high dimensional.

Consider the following example: x = [21 z2 - -- wd]T, anddefinep(x) =[1 21 --- 4 zIT2 -+ Ta-1Td -+ TIT2- - xd]T

Quiz: What is the dimensionality of ¢(x)?

This new representation, ¢(X), is very expressive and allows for complicated non-linear decision boundaries - but the dimensionality is extremely high. This

makes our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the much higher dimensional space, without ever computing a single vector ¢(x)
or ever computing the full vector w. It is based on the following observation: If we use gradient descent with any one of our standard loss functions, the gradient

T

is a linear combination of the input samples. For example, let us take a look at the squared loss: Lw) = ?:1 (w'x; — yi)2. The gradient descent rule, with

step-size/learning-rate s > 0 (we denoted this as & > 0 in our previous lectures), updates W over time,

ot ol < S
Wit < Wy — 5(%) where: ow Z; 2w 'x; —y;) xi = Z;')’ixi

i : function of x;,y;

We will now show that we can express W as a linear combination of all input vectors,

n
W = E a;X;.
i=1

Since the loss is convex, the final solution is independent of the initialization, and we can initialize w to be whatever we want. For convenience, let us pick
wo = 0 the all-0 vector. For this initial choice of Wy, the linear combination in w = E?:l a;iX; is trivially o1 = + -+ = an = 0. Throughout the entire
gradient descent optimization such coefficients a1, . . . , an must always exist, as we can re-write the gradient updates entirely in terms of updating the v
coefficients. Formally, the argument is by induction. W is trivially a linear combination of our training vectors for W (base case). If we apply the inductive

hypothesis for w it follows for W+1.

The update-rule for o} is thus o = afl - S’yf*l, and we have ol = —s i;}] 77 In other words, we can perform the entire gradient descent update

rule without ever expressing W explicitly. We just keep track of the n coefficients oy, . .., at,. Now that W can be written as a linear combination of the

training set, we can also express the inner-product of W with any input X; purely in terms of inner-products between training inputs:

file:///Users/cdesa/Teaching/CS4780MasterCornell/2022Spring/Notes/lecturenote10.html
file:///Users/cdesa/Teaching/CS4780MasterCornell/2022Spring/Notes/lecturenote10.html

n
T _ § : T
i=1

. n T 2 . . : i .
Consequently, we can also re-write the squared-loss from Z(W) = Ei:l (W Xi — yrb) entlrely in terms ofmner—product between tralnmg Inputs:

2
a) = ; (; ajijxi — yi)

Quiz: How would you write the test-time classifier in terms of these o parameters?

Inner-Product Computation

Let's go back to the previous example, of feature map ¢ consisting of polynomials of degree-up-to-d in & and degree at most 1 in each ;. The inner product

(Z)(X)Td)(z) can be formulated as:
d
d(x)Tp(z) =1-1+ 12 +Tozg + -+ Xy@p212p + -+ @y Tgzy - 2g = H(l + z121).
k=1

The sum of 2% terms becomes the product of d terms. We can compute the inner-product from the above formula in time O(d) instead ofO(Zd)! We define

the function
— T
k(xivxj) = ¢(xi) ¢(x]-).
RyTes 7o
this is called the kernel function
With a finite training set of 7o samples, inner products are often pre-computed and stored in a Kernel Matrix (a.k.a. Gram Matrix):
K. = AT .
1y ¢(xz) ¢(X]).

If we store the matrix K, we only need to do simple inner-product look-ups and low-dimensional computations throughout the gradient descent algorithm.

During training in the new high dimensional space of ¢(x) we want to compute ; through kernels, without ever computing any ¢(xX;) or even W.

How does this affect the computational cost of our linear regressor?

General Kernels

Below are some popular kernel functions:

Linear: K(x,z) = x ' 2. (The linear kernel is equivalent to just using a good old linear classifier - but it can be faster to use a kernel matrix if the dimensionality
d of the data is high.)

Polynomial: K(x,z) = (14 x "z)?.

—x—z||?

Radial Basis Function (RBF) (aka Gaussian Kernel): K(x,2z) = e <2 . The RBF kernel is the most popular Kernel! It is a Universal approximator!! Its

corresponding feature vector is infinite dimensional and cannot be computed. However, very effective low dimensional approximations exist (see this paper).

—lx—z|

Exponential Kernel: K(x,2) = e 272

—x—z|

Laplacian Kernel: K(x,z) = e~

Sigmoid Kernel: K(x, z) = tanh(ax " + c)

Can any function K(+, -) — R be used as a kernel?

https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf

