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Handcrafted Feature Expansion.
 Linear classifiers are great, but what if there exists no linear decision boundary? As it turns out, there is an elegant way to
incorporate non-linearities into most linear classifiers.
We can make linear classifiers non-linear by applying basis function (feature transformations) on the input
feature vectors. Formally, for a data vector , we apply the transformation  where . Usually  because we add dimensions
that capture non-linear interactions among the original features.

Question: In the figure to the right, what would be a good transformation to use? What
would be a bad transformation?

Advantage: It is simple, and your problem stays convex and well behaved. (i.e. you can
still use your original gradient descent code, just with the higher dimensional representation)

Disadvantage:  might be very high dimensional.

Consider the following example: , and define .

Quiz: What is the dimensionality of ?

This new representation, , is very expressive and allows for complicated non-linear decision boundaries - but the dimensionality is extremely high. This
makes our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the much higher dimensional space, without ever computing a single vector 
or ever computing the full vector . It is based on the following observation: If we use gradient descent with any one of our standard loss functions, the gradient
is a linear combination of the input samples. For example, let us take a look at the squared loss: 
The gradient descent rule, with
step-size/learning-rate  (we denoted this as  in our previous lectures), updates  over time,

We will now show that we can express  as a linear combination of all input vectors,

Since the loss is convex, the final solution is independent of the initialization, and we can initialize  to be whatever we want. For convenience, let us pick 
 the all-0 vector.
For this initial choice of , the linear combination in  is trivially . Throughout the entire

gradient descent optimization such coefficients  must always exist, as we can re-write the gradient updates entirely in terms of updating the 
coefficients.
Formally, the argument is by induction.  is trivially a linear combination of our training vectors for  (base case). If we apply the inductive
hypothesis for  it follows for .

The update-rule for  is thus
 
In other words, we can perform the entire gradient descent update
rule without ever expressing  explicitly. We just keep track of the  coefficients .
Now that  can be written as a linear combination of the
training set, we can also express the inner-product of  with any input  purely in terms of inner-products between training inputs:

x ∈ R
d x → ϕ(x) ϕ(x) ∈ R

D D ≫ d

ϕ(x)

x = [ ]Tx1 x2 ⋯ xd ϕ(x) = [ ]T1 x1 ⋯ xd x1x2 ⋯ xd−1xd ⋯ x1x2 ⋯xd

ϕ(x)

ϕ(x)

ϕ(x)

w

ℓ(w) = ∑n
i=1(w⊤xi − yi)2.

s > 0 α > 0 w

wt+1 ← wt − s(
∂ℓ

∂w
)  where: 

∂ℓ

∂w
=

n

∑
i=1

2(w
⊤

xi − yi)

γi : function of xi,yi

xi =
n

∑
i=1

γixi

w

w =
n

∑
i=1

αixi.

w
0

w0 = 0 w0 w = ∑
n
i=1 αixi α1 = ⋯ = αn = 0

α1, … ,αn αi

w w0

wt wt+1

αt
i

αt
i

= αt−1
i

− sγ t−1
i

,  and we have αt
i

= −s∑t−1
r=0 γ

r
i
.

w n α1, … ,αn w

w xi

file:///Users/cdesa/Teaching/CS4780MasterCornell/2022Spring/Notes/lecturenote10.html
file:///Users/cdesa/Teaching/CS4780MasterCornell/2022Spring/Notes/lecturenote10.html


Consequently, we can also re-write the squared-loss from  entirely in terms of inner-product between training inputs:

Quiz: How would you write the test-time classifier in terms of these  parameters?

Inner-Product Computation

Let's go back to the previous example, of feature map  consisting of polynomials of degree-up-to-d in  and degree at most 1 in each .
The inner product 
 can be formulated as:

The sum of  terms becomes the product of  terms. We can compute the inner-product from the above formula in time  instead of !
We define
the function

With a finite training set of  samples, inner products are often pre-computed and stored in a Kernel Matrix (a.k.a. Gram Matrix):

If we store the matrix , we only need to do simple inner-product look-ups and low-dimensional computations throughout the gradient descent algorithm.
During training in the new high dimensional space of  we want to compute  through kernels, without ever computing any  or even .

How does this affect the computational cost of our linear regressor?

General Kernels

Below are some popular kernel functions:

Linear: . (The linear kernel is equivalent to just using a good old linear classifier - but it can be faster to use a kernel matrix if the dimensionality 
 of the data is high.)

Polynomial: .

Radial Basis Function (RBF) (aka Gaussian Kernel): . The RBF kernel is the most popular Kernel! It is a Universal approximator!! Its
corresponding feature vector is infinite dimensional and cannot be computed. However, very effective low dimensional approximations exist (see this paper).

Exponential Kernel: 

Laplacian Kernel: 

Sigmoid Kernel: 

Can any function  be used as a kernel?

w
⊤

xj =
n

∑
i=1

αix
⊤
i xj.

ℓ(w) = ∑
n
i=1(w

⊤
xi − yi)2

ℓ(α) =
n

∑
i=1

(
n

∑
j=1

αjx
⊤
j xi − yi)

2

α

ϕ x xi

ϕ(x)⊤ϕ(z)

ϕ(x)⊤ϕ(z) = 1 ⋅ 1 + x1z1 + x2z2 + ⋯ + x1x2z1z2 + ⋯ + x1 ⋯xdz1 ⋯ zd =
d

∏
k=1

(1 + xkzk).

2d d O(d) O(2d)

k(xi, xj)

this is called the kernel function

= ϕ(xi)⊤ϕ(xj).


n

Kij = ϕ(xi)
⊤ϕ(xj).

K

ϕ(x) αi ϕ(xi) w

K(x, z) = x⊤z

d

K(x, z) = (1 + x
⊤

z)d

K(x, z) = e
−∥x−z∥2

σ2

K(x, z) = e
−∥x−z∥

2σ2

K(x, z) = e
−|x−z|

σ

K(x, z) = tanh(ax
⊤ + c)

K(⋅, ⋅) → R

https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf

