
Kernels
Cornell CS 4/5780 — Spring 2022

Handcrafted Feature Expansion. Linear classi�ers are great, but what if there exists no linear decision boundary? As it turns out, there is an elegant way to
incorporate non-linearities into most linear classi�ers. We can make linear classi�ers non-linear by applying basis function (feature transformations) on the input
feature vectors. Formally, for a data vector , we apply the transformation  where . Usually  because we add dimensions
that capture non-linear interactions among the original features.

Question: In the �gure to the right, what would be a good transformation to use? What
would be a bad transformation?

Advantage: It is simple, and your problem stays convex and well behaved. (i.e. you can
still use your original gradient descent code, just with the higher dimensional representation)

Disadvantage:  might be very high dimensional.

Consider the following example: , and de�ne .

Quiz: What is the dimensionality of ?

This new representation, , is very expressive and allows for complicated non-linear decision boundaries - but the dimensionality is extremely high. This
makes our algorithm unbearable (and quickly prohibitively) slow.

The Kernel Trick

Gradient Descent with Squared Loss

The kernel trick is a way to get around this dilemma by learning a function in the much higher dimensional space, without ever computing a single vector 
or ever computing the full vector . It is based on the following observation: If we use gradient descent with any one of our standard loss functions, the gradient
is a linear combination of the input samples. For example, let us take a look at the squared loss:  The gradient descent rule, with
step-size/learning-rate  (we denoted this as  in our previous lectures), updates  over time,

We will now show that we can express  as a linear combination of all input vectors,

Since the loss is convex, the �nal solution is independent of the initialization, and we can initialize  to be whatever we want. For convenience, let us pick 
 the all-0 vector. For this initial choice of , the linear combination in  is trivially . Throughout the entire

gradient descent optimization such coe�cients  must always exist, as we can re-write the gradient updates entirely in terms of updating the 
coe�cients. Formally, the argument is by induction.  is trivially a linear combination of our training vectors for  (base case). If we apply the inductive
hypothesis for  it follows for .

The update-rule for  is thus  In other words, we can perform the entire gradient descent update
rule without ever expressing  explicitly. We just keep track of the  coe�cients . Now that  can be written as a linear combination of the
training set, we can also express the inner-product of  with any input  purely in terms of inner-products between training inputs:

x ∈ R
d x → ϕ(x) ϕ(x) ∈ R

D D ≫ d

ϕ(x)

x = [ ]Tx1 x2 ⋯ xd ϕ(x) = [ ]T1 x1 ⋯ xd x1x2 ⋯ xd−1xd ⋯ x1x2 ⋯xd

ϕ(x)

ϕ(x)

ϕ(x)

w

ℓ(w) = ∑n
i=1(w⊤xi − yi)2.

s > 0 α > 0 w

wt+1 ← wt − s(
∂ℓ

∂w
)  where: 

∂ℓ

∂w
=

n

∑
i=1

2(w
⊤

xi − yi)

γi : function of xi,yi

xi =
n

∑
i=1

γixi

w

w =
n

∑
i=1

αixi.

w
0

w0 = 0 w0 w = ∑
n
i=1 αixi α1 = ⋯ = αn = 0

α1, … ,αn αi

w w0

wt wt+1

αt
i

αt
i

= αt−1
i

− sγ t−1
i

,  and we have αt
i

= −s∑t−1
r=0 γ

r
i
.

w n α1, … ,αn w

w xi

file:///Users/cdesa/Teaching/CS4780MasterCornell/2022Spring/Notes/lecturenote10.html
file:///Users/cdesa/Teaching/CS4780MasterCornell/2022Spring/Notes/lecturenote10.html


Consequently, we can also re-write the squared-loss from  entirely in terms of inner-product between training inputs:

Quiz: How would you write the test-time classi�er in terms of these  parameters?

Inner-Product Computation

Let's go back to the previous example, of feature map  consisting of polynomials of degree-up-to-d in  and degree at most 1 in each . The inner product 
 can be formulated as:

The sum of  terms becomes the product of  terms. We can compute the inner-product from the above formula in time  instead of ! We de�ne
the function

With a �nite training set of  samples, inner products are often pre-computed and stored in a Kernel Matrix (a.k.a. Gram Matrix):

If we store the matrix , we only need to do simple inner-product look-ups and low-dimensional computations throughout the gradient descent algorithm.
During training in the new high dimensional space of  we want to compute  through kernels, without ever computing any  or even .

How does this a�ect the computational cost of our linear regressor?

General Kernels

Below are some popular kernel functions:

Linear: . (The linear kernel is equivalent to just using a good old linear classi�er - but it can be faster to use a kernel matrix if the dimensionality 
 of the data is high.)

Polynomial: .

Radial Basis Function (RBF) (aka Gaussian Kernel): . The RBF kernel is the most popular Kernel! It is a Universal approximator!! Its
corresponding feature vector is in�nite dimensional and cannot be computed. However, very e�ective low dimensional approximations exist (see this paper).

Exponential Kernel: 

Laplacian Kernel: 

Sigmoid Kernel: 

Can any function  be used as a kernel?

w
⊤

xj =
n

∑
i=1

αix
⊤
i xj.

ℓ(w) = ∑
n
i=1(w

⊤
xi − yi)2

ℓ(α) =
n

∑
i=1

(
n

∑
j=1

αjx
⊤
j xi − yi)

2

α

ϕ x xi

ϕ(x)⊤ϕ(z)

ϕ(x)⊤ϕ(z) = 1 ⋅ 1 + x1z1 + x2z2 + ⋯ + x1x2z1z2 + ⋯ + x1 ⋯xdz1 ⋯ zd =
d

∏
k=1

(1 + xkzk).

2d d O(d) O(2d)

k(xi, xj)

this is called the kernel function

= ϕ(xi)⊤ϕ(xj).


n

Kij = ϕ(xi)
⊤ϕ(xj).

K

ϕ(x) αi ϕ(xi) w

K(x, z) = x⊤z

d

K(x, z) = (1 + x
⊤

z)d

K(x, z) = e
−∥x−z∥2

σ2

K(x, z) = e
−∥x−z∥

2σ2

K(x, z) = e
−|x−z|

σ

K(x, z) = tanh(ax
⊤ + c)

K(⋅, ⋅) → R

https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf

